
Security audit of the e-voting backend
version 1.4.3

CLIENT Swiss Federal Chancellery
DATE July 26, 2024
VERSION 1.0
GIT COMMIT ee62970
STATUS Final

CLASSIFICATION Public
AUTHORS Philippe Oechslin, Delphine

Peter
DISTRIBUTION Swiss Federal Chancellery
MODIFICATIONS

Contents

1 Introduction 1
1.1 Context 1
1.2 Execution of the work 1
1.3 Executive summary 2

2 Channel Security Signatures 3
2.1 Configuration Phase 3
2.2 Voting Phase 4
2.3 Tally Phase 4

3 Creating error situations 5
3.1 Casting a vote with an invalid partial choice code 5
3.2 Modifying signed parameters 6
3.3 Removing signatures 8
3.4 Creating inconsistency in the tally phase 9

4 Voting client security and Authenticated Data 10
4.1 Security of the JavaScript code 10
4.2 Authenticated data 10

5 Technical security tests 12
5.1 Analysis of Open Ports 12
5.2 Analysis of exposed REST endpoints 12
5.3 Other configurations 13
5.4 Scanning for vulnerabilities 13

6 Conclusions 14

OS Objectif Sécurité SA
Route Cité-Ouest 19 - CH-1196 Gland
+41 22 364 85 70 - info@objectif-securite.ch

July 26, 2024 1 Public

1 Introduction

1.1 Context

The goal of this audit was to examine the security of the server-side parts of the e-voting systems based
on the publicly available end-to-end test system.

Swiss post publishes the end-to-end test system as a set of docker containers and configuration data1.
This makes it possible to run a complete election event on a local machine.

Obviously, a local end-to-end system does not have all the security controls that exist in the real produc
tion environment. But since it uses the same code, it allows testing security aspects that do not depend
on the production environment.

Twoprevious versionsof theend-to-endsystemhadalreadybeenauditedbyObjectif Sécurité. Additional
tests were conducted on the latest released version (1.4.3).

1.2 Execution of the work

The security audit was conducted in July 2024 from Objectif Sécurité's premises.

All testswere performed on version 1.4.3 of the end-to-end system, whichwas the latest released version
at the time of the audit. The three instances of Secure Data Managers (SDMs) as well as the Data Integra
tion Service (DIS) and the Verifierwere run on aWindows virtualmachine (VM), while all docker containers
were installed on a Linux VM.

Furthermore, our analysis of the end-to-end system was based on the following documentation as pub
lished on Swiss Post's GitLab repository2:

• Swiss Post Voting System, System Specification, v1.4.1
• Cryptographic Primitives of the Swiss Post Voting System, v1.4.1
• E-Voting Architecture Document, v.1.4.0

Previous versions3 of the end-to-end system have been audited in 2022 and 2023. Results obtained on
these versions are detailed in our previous reports. Note that all tests performed during these previous
audits were run again on version 1.4.3 of the system.

1 https://gitlab.com/swisspost-evoting/e-voting/evoting-e2e-dev
2 https://gitlab.com/swisspost-evoting/
3 versions 0.15.2.1 and 1.3.2.1

https://gitlab.com/swisspost-evoting/e-voting/evoting-e2e-dev
https://gitlab.com/swisspost-evoting/
versions%200.15.2.1%20and%201.3.2.1

Introduction

July 26, 2024 2 Public

1.3 Executive summary

The analysis of the results of the tests led us to the following conclusions:

All sensitive data protected by signatures: Wewereable toverify thatallmessages required tobesigned
according to the specification are indeed signed in the implementation. Furthermore,we intercepted
and modified several messages exchanged between the backend components in order to detect po
tential issues in the signature validation. All our tested resulted in an error raised by the recipient,
which detected an invalid signature in the tampered messages.

Client software and parameter integrity validation: The voters can use a published hash to verify that
they are using the correct software. This software verifies all parameters, including the public key
used for encryption. The verification is donewith a hashof all parameters that is stored in the authen
ticated data of the voter's keystore. Thus, when a voter types in the Start Voting Key that is printed on
their material, that key is used both to decrypt a secret that will allow them to vote and to verify that
the correct parameters will be used to vote.

Displayed texts not validated by the voting client: Althoughall votingparametersareproperly validated
by the voting client through authenticated encryption, the corresponding authenticated data do not
include the texts that are actually displayed in the voter's browser. One could thus modify the ques
tions or the voting options shown to the voters in order to influence their choices. Nevertheless, ma
nipulations of the voting options' texts can be detected with the return codes, and the question texts
can also be compared with those displayed on the printed material.

No technical flaws detected: We did not discover any vulnerabilities in the backend components that
would allow an attacker to manipulate the end-to-end system operations. Some default or weak pa
rameters were found in the containers' configuration, but they are most likely only applied in test en
vironments.

July 26, 2024 3 Public

2 Channel Security Signatures

The computational proofs rely on messages' authenticity which is not given in the communication chan
nels. To achieve this property, the cryptographic protocol adds signatures to most messages. These
signatures are detailed in section 7 of the System Specification.

We set up the system in a way that we could eavesdrop on all communications and verified the presence
of the signatures listed in the specification. The signatures are given in tables 15, 16 and 17 of the System
Specification.

2.1 Configuration Phase

Figure 2.1 Table 15 of the document: messages of the configuration phase

We numbered the messages from 1 to 13. We successfully verified that messages 1 to 11 are signed. Mes
sages 12 and 13 seem to correspond to the files transmitted from the Setup SDM to Verifier and Tally CC.
Those files are encrypted, so we could not verify if they contain a signature.

We verified that the CMtable is correctly ordered alphabetically according to the base64 value of its first
column.

Channel Security Signatures

July 26, 2024 4 Public

2.2 Voting Phase

Figure 2.2 Table 16 of the document: messages of the voting phase

We observed all messages with their respective signatures.

2.3 Tally Phase

Figure 2.3 Table 17 of the document: messages of the tally phase

We observed the signatures of the first three messages, as well as the signatures included in the three
files generated by the Tally CC (messages 6 to 8 in Table 17).
Again, messages 4 and 5 are transmitted to the Verifier through an encrypted file generated by the Tally
CC. We were thus unable to verify if a signature is present in this file.

July 26, 2024 5 Public

3 Creating error situations

We created several error scenarios to verify the correct reaction of the system.

These tests required us to intercept Artemis messages exchanged between the control components and
the voting server through the message broker. Since these packets are not encrypted in the test end-
to-end configuration, we could modify the intercepted messages in order to trigger the errors detailed
below.

3.1 Casting a vote with an invalid partial choice code

Before calculating return codes for a submitted vote, the control components first validate that the re
ceived partial choice codes are in a defined allow-list enumerating all possible valid inputs. This guaran
tees that the control components do not perform calculations with manipulated parameters.

We used our own voting client to submit a vote with an invalid partial choice code. As a result, we did not
receive any answer from the voting server. The latter server did not reply either when we subsequently
tried to submit a correct vote with the same voting card.

The behaviour of the system is correct in the sense that a vote with invalid pCCs will be detected when
the control components run the CreateLCCShare algorithm, during the calculation of the return code.
Subsequent submissions of a vote are blocked because the voting card has been recorded in the list
𝐋decPCC of cards for which a pCC has already been decrypted.

We checked the logs of the end-to-end system to verify whether the lack of answerwas due to a correctly
intercepted error or to a crash of the program.

We indeed observed an error in all control components' logs, which was properly caught:

$ docker logs control-component-1

Caused by: java.lang.IllegalStateException: Failed to execute exactly once command

at ch.post.it.evoting.controlcomponent.ExactlyOnceCommandExecutor.process(ExactlyOnceCommandExecutor.java:94)

~[!/:1.4.3.0]

[...]

... 10 common frames omitted

Caused by: java.lang.IllegalStateException: The partial Choice Return Codes allow list does not contain the partial
Choice Return Code.

at ch.post.it.evoting.controlcomponent.protocol.voting.sendvote.CreateLCCShareAlgorithm.lambda$createLCCShare$0(Cre

ateLCCShareAlgorithm.java:119) ~[!/:1.4.3.0]

Creating error situations

July 26, 2024 6 Public

3.2 Modifying signed parameters

As mentioned in chapter 2, all messages exchanged between the control components, the Online SDM
and the voting server are signed. We tried to intercept and modify several of these messages in order to
verify if their signatures are properly validated by the recipients. The following scenarios were tested:

1. Request CC Keys : In the configuration phase, the control components send their public keys to the
Online SDM over HTTP. These public keys are used during the voting phase to encrypt the partial
Choice Return Codes. We intercepted the HTTP response containing those keys and modified the
first control component's key.

This manipulation is detected by the Setup SDM when the Electoral Board is constituted. The follow
ing error is displayed in the Setup SDM's logs:
java.util.concurrent.CompletionException: ch.post.it.evoting.domain.InvalidPayloadSignatureException: Signature of

payload ControlComponentPublicKeysPayload is invalid. [electionEventId: F5654BC3A3D4345FAADB32A5F5217346, nodeId: 2]

[...]

Caused by: ch.post.it.evoting.domain.InvalidPayloadSignatureException: Signature of payload
ControlComponentPublicKeysPayload is invalid. [electionEventId: F5654BC3A3D4345FAADB32A5F5217346, nodeId: 2]

at ch.post.it.evoting.securedatamanager.setup.process.constituteelectoralboard.

ControlComponentPublicKeysConfigService.validateSignature(ControlComponentPublicKeysConfigService.java:112)

[...]

Note that the signatures of the public keys are validated by the Setup SDM, and not by the Online SDM
which requests them. Thus, the Online SDM indicates that the keys have been successfully retrieved
(see figure 3.1). The error is only displayed when one tries to subsequently constitute the Electoral
Board with the Setup SDM (see figure 3.2).
Even though the message displayed by the Online SDM might be misleading, we did not find a way to
complete the configuration phase with a tampered control component encryption key.

Figure 3.1 Success message displayed by the Online SDM when a control component's
public key has been tampered with

Figure 3.2 Error message displayed by the
Setup SDM upon Electoral Board constitution

Creating error situations

July 26, 2024 7 Public

Ideally, the Online SDM could verify the signatures and prevent the tampered data to be delivered to
the Setup SDM.

2. PartialDecryptPCC :When a vote is submitted, each control component runs the PartialDecryptPCC
algorithm on the received encrypted vote and sends the partially decrypted PCCs along with expo
nentiation proofs to the other CCs in order to complete decryption. We modified the result of the
PartialDecryptPCC algorithm (exponentiatedGammas) sent from CC1 to the other CCs through the voting
server.

The following error was observed in the receiving CCs' logs:

org.springframework.jms.listener.adapter.ListenerExecutionFailedException: Listener method 'public <T,U> void

ch.post.it.evoting.controlcomponent.MessageHandler.onMessage(jakarta.jms.Message) throws jakarta.jms.JMSException'

threw exception

[...]

Caused by: ch.post.it.evoting.domain.InvalidPayloadSignatureException: Signature of payload
ControlComponentPartialDecryptPayload is invalid. [contextIds:

ContextIds[electionEventId=F6B099CAC1C51075E70B780A4BA1DB27, verificationCardSetId=02117EB17A4A01E86FDD0DB9F3B7E39D,

verificationCardId=6CFE22CC190776263D3DED6BAF2D39FD]]

[...]

3. CreateLVCCShare : When calculating the finalisation code, the control components exchange their
partial results (fromCreateLVCCShare) andcheck that thecombinationof the results is in anallow-list
(VerifyLVCCHash). Only then do they reveal to the voting server the information needed to calculate
the finalisation code.

We intercepted the trafficbetween the voting server and a control component andmodified themes
sage containing the confirmation key 𝐶𝐾𝑖𝑑, which is used as input for the CreateLVCCShare algorithm.
Note that this message is signed by the voting server.

The modification is detected, and no finalisation code is generated. There is a timeout. The control
component that received the manipulated value has the following log entry:
org.springframework.jms.listener.adapter.ListenerExecutionFailedException: Listener method 'public <T,U>

void ch.post.it.evoting.controlcomponent.MessageHandler.onMessage(jakarta.jms.Message) throws

jakarta.jms.JMSException' threw exception

[...]

Caused by: java.lang.IllegalStateException: The signature is not valid. [requestMessageType:

ch.post.it.evoting.domain.voting.confirmvote.VotingServerConfirmPayload, correlationId:

462684ea-ea39-4722-8762-a6672299ba4b, nodeId: 1]

[...]

After tallying, we can confirm that the vote is not part of the votes that have been tallied.

4. VerifyLVCCHash:

As mentioned in the previous paragraph, the control components verify that the long Vote Cast Re
turn Codes calculated by all four control components (in the CreateLVCCShare algorithm) are valid,
according to a pre-defined allow-list. This is the VerifyLVCCHash algorithm.

We intercepted the VerifyLVCCHash request sent to CC4 and modified the hash computed by CC1.

Creating error situations

July 26, 2024 8 Public

This modification is detected, and no finalisation code is generated. There is a timeout. CC4, which
received the manipulated request, has the following log entry:
org.springframework.jms.listener.adapter.ListenerExecutionFailedException: Listener method 'public <T,U> void

ch.post.it.evoting.controlcomponent.MessageHandler.onMessage(jakarta.jms.Message) throws jakarta.jms.JMSException'

threw exception

[...]

Caused by: java.lang.IllegalStateException: The signature is not valid. [requestMessageType:

ch.post.it.evoting.domain.voting.confirmvote.ControlComponenthlVCCRequestPayload, correlationId:

88dceae1-2dcd-4935-8526-e1490ac0b275, nodeId: 4]

[...]

5. MixDecOnline: In the MixDecOnline algorithm run in the tally phase, the control components succes
sively compute partially decrypted and shuffled votes, as well as the corresponding proofs. We in
tercepted the message containing the MixDecOnline result computed by CC1 and transmitted to CC2,
and modified the decryption proofs.

This modification is detected and the Mixing phase fails. CC2, which received the manipulated mes
sage, has the following log entry:

Unable to consume message: Signature of payload ControlComponentShufflePayload is invalid. [nodeId: 1,

electionEventId: 20B4AE0C3D63046E6CA1DAAF1D59EFFF, ballotBoxId: D87E813E98501A755C434E7F163CDF27]

3.3 Removing signatures

Since all our attempts to modify signed parameters resulted in errors indicating that the message's sig
nature is invalid (see section 3.2), we tried to remove signatures in several messages in order to verify if
it is indeed required for the recipient to proceed with the expected operation.

In this experiment, we tampered with the following messages:

• Configuration phase: we removed the signature of the control components' public keys sent to the
Online SDM (message 3 in figure 2.1)

• Voting phase: we removed the signatures of all messages listed in figure 2.2
• Tally phase: we removed the signature of the MixDecOnline result computed by a control component

(message 3 in figure 2.3)

In each case, the modification is detected and the receiving party refuses to process the tampered mes
sage. A NullPointerException is shown in the recipient's logs when the message is parsed:

org.springframework.jms.listener.adapter.ListenerExecutionFailedException: Listener method 'public <T,U> void

ch.post.it.evoting.controlcomponent.MessageHandler.onMessage(jakarta.jms.Message) throws jakarta.jms.JMSException' threw

exception

[...]

Caused by: com.fasterxml.jackson.databind.exc.ValueInstantiationException: Cannot construct instance of
`ch.post.it.evoting.evotinglibraries.domain.signature.CryptoPrimitivesSignature`, problem:java.lang.NullPointerException
[...]

Caused by: java.lang.NullPointerException: null

at com.google.common.base.Preconditions.checkNotNull(Preconditions.java:906) ~[guava-33.2.1-jre.jar!/:na]

at ch.post.it.evoting.evotinglibraries.domain.signature.CryptoPrimitivesSignature.<init>

(CryptoPrimitivesSignature.java:30) ~[e-voting-libraries-domain-1.4.3.0.jar!/:1.4.3.0]

Creating error situations

July 26, 2024 9 Public

3.4 Creating inconsistency in the tally phase

As detailed in the 4th experiment described in section 3.2, we triggered an error in the VerifyLVCCHash

algorithm by modifying one of the hash shares that are exchanged between the control components
(hlVCCid) for validation.

The control component that receives the modified hash will not register the vote as confirmed in the
ballot box, whereas the three other components will.

Inourpreviousaudit,whichwasconductedonversion 1.3.2.1 of theend-to-endsystem, this inconsistency
led to the following error in the second control component's logs:
The initial ciphertexts vector and verifiable shuffles ciphertexts vector must have the same size.

In order to avoid the size differences in the ciphertext vectors handled by the control components during
mixing, we conducted a new test on the latest version of the system (1.4.3): the same manipulation of the
VerifyLVCCHash request was performed on four different votes, once for each control component. In this
way, theywould all have the samenumber of votes, sinceeachcontrol componentwould havediscarded a
different one. This situation would not be detected by the consistency check that compares the number
of initial votes with the number of shuffled votes.

We indeeddid not obtain the aboveerrormessage in the control component's logs uponmixing. However,
the voting server still detects the manipulation and outputs the following error, which makes the tally
phase fail:

Unable to consume message: All Control Component Votes Hash Payloads must have the same encrypted confirmed votes hash.

[...]

Caused by: java.lang.IllegalArgumentException: All Control Component Votes Hash Payloads must have the same
encrypted confirmed votes hash.

at com.google.common.base.Preconditions.checkArgument(Preconditions.java:145)

This is due to a new validation added to the MixOnline algorithm since our previous audit: each control
components now sends the hash generated from the list of encrypted confirmed votes it registered (Get
MixnetInitialCiphertexts) to the voting server before starting mixing. The voting server then returns an
error if those hashes differ, and the mixing fails. Thus, we could not reproduce the scenario observed in
our previous audit, because the tally phase fails before comparing the ciphertext vectors.

It should be noted that the voting server is not considered as trusted, so the other parties involved in the
tally phase should performa similar check on the hashes to detect suchmanipulations, and not solely rely
on the voting server. We were not able to bypass the voting server's verification in order to confirm that
the CCMs actually perform a similar check, but the system documentation states that they do.

July 26, 2024 10 Public

4 Voting client security and Authenticated
Data

4.1 Security of the JavaScript code

When the voter accesses the home page of the voting server, four JavaScript files are loaded:

– runtime.js
– polyfills.js
– crypto.ov-api.js
– main.js

They contain the code of the voting client. For each JavaScript file, an integrity tag containing a hash of
the file is provided, e.g.:
<script src="runtime.js"

integrity="sha384-YwZU+M0RWirxGUXpR82bV38PfKIXCa1y7oI8xk3Xo3I+rHG5znVHx9+02CX0YUS6">

[..]

</script>

Voters have the possibility to compare this hash to known good hashes on the web sites of the cantons.
They can trust their browsers to verify the hash of the files or download the files and verify the hash with
a tool they trust.

Furthermore, they can compare the content of the HTML file that loads the hashes with a known good
copy on the web sites of the cantons.

If they trust the known good sources, the voters can thus be sure that they are being served the correct
voting client from the voting server.

4.2 Authenticated data

Once the voting client is loaded, and after the voter has authenticated, the client receives all the neces
sary parameters and data from the voting server.

One key parameter is the private key that the voter needs to carry out the cryptographic protocol. It is
received in a keystore that is encryptedwith a key derived from theStart VotingKey (SVK)which is printed
on the voting material. The voter can thus only vote if they type in the correct SVK.

Additionally to the private key, the keystore also carries a hash of all cryptographic parameters and of
the semantic of the ballot. The voting client verifies that the hash matches a hash calculated with the
parameters that were actually received by the client. The list of parameters that are fed into the hash are
given in the GetHashContext algorithm of the protocol specification as seen in figure 4.1.

If the hashesdonotmatch, the voting client refuses to vote. Weverified this behaviour in the source code
of the client and during our online test.

If the voter thus verifies the integrity of the voting client downloaded from the home page, they will know
that the voting client will only proceed if none of the parameters received by the server have been tam
pered. The more inclined voters may even calculate the hash of the parameters and verify it themselves.

Voting client security and Authenticated Data

July 26, 2024 11 Public

Figure 4.1 Hash Context: List of parameters that are included in the hash which is ver
ified when decrypting the private key of the voter

Figure 4.2 Error displayed when one of the parameters of the Hash Context has been
tampered with

Although the authenticated parameters include the actual voting options (i.e. yes, no, list and candidate
names) and the semantic information (text of the questions) it does not include the text that is actually
displayed to the voters. This text, in all four national languages, is indeed part of a structure called bal

lotTexts, which is not authenticated.
The voters can detect manipulation of the text of voting options by comparing the return codes with the
codes printed on their voting material. They can detect the manipulation of the questions (e.g. ‘do you
accept’ vs ‘do you reject’) by reading the questions on their printed material. Still, the voting client would
be more secure if the hash of the ballot texts was also included in the information that is authenticated
along with the other voting parameters.

July 26, 2024 12 Public

5 Technical security tests

5.1 Analysis of Open Ports

The voting server and the four control components have an open port for debugging. The port gives ac
cess to theJavaDebugWireProtocol (JDWP). This protocol can be abused to execute arbitrary command
on the machine.

Thedebuggingport is activated fromthecommand linewhenstarting theapplicationwith theparameter:
-agentlib:jdwp=transport=dt_socket,address=*:<port>,server=y,suspend=n

This parameter is set in the common configuration file (docker-compose.common.yml) for the five docker
containers mentioned above.

We assume that this parameter is not set in production environments.

Other than JDWP, which is valid in a test environment, we did not discover any unnecessarily open ports.

5.2 Analysis of exposed REST endpoints

The voting server offers a set of REST endpoints that are used to interact with the end-to-end system's
backend. For example, the following endpoint allows to retrieve all used voting cards for a given election
event ID:

/vs-ws-rest/api/v1/voting-card-manager/used-voting-cards/election-event/{electionEventId}

Unlike thepreviously tested versionof theend-to-end system, thebackendAPI is no longer split overmul
tiplemicroservices representing the different phases of the process and running in separate containers.
Now, the entire backend API is handled by the voting-server container.

Although the API endpoints are no longer listed in the application logs on startup, we could retrieve them
from the source code.

We analysed the lists of endpoints available to check if there was a service that would give access to
protected information or functionality, maybe for debugging purposes. We did not identify any endpoint
that did not seem to be legitimate.

Note that the control components do not expose any REST endpoint. They connect to an ActiveMQ mes
sage broker they can exchange messages with.

Technical security tests

July 26, 2024 13 Public

5.3 Other configurations

We noticed some default or weak configurations applied to the end-to-end system's docker containers:

• Default credentials are configured for the Artemis ActiveMQ administration console
• Weak credentials are configured for the database used by the voting server and the control compo

nents
• Artemismessages are exchanged in cleartext between the voting server and the control components

(through the message broker)
• HTTP traffic is also sent in cleartext between the Online SDM and the voter portal, as well as between

the voter portal and the voting server

These configurations are acceptable in a test environment but should not be used in production. We
assume that production systems use more secure parameters.

5.4 Scanning for vulnerabilities

The docker containers only contain the minimal set of programs needed for e-voting. We scanned the
containers with a vulnerability scanner and also checked the version of some of the software manually.

All software seems to be up-to-date with no known vulnerabilities.

July 26, 2024 14 Public

6 Conclusions

We conducted various tests on the backend components of the end-to-end e-voting system. This audit
did not reveal any vulnerability in the implementation of the backend systems.

In particular, all sensitive data exchanged between the various backend components in the three phases
(configuration, vote, tally) are signed by the sender and the latter signature is properly validated by the
recipient. This greatly reduces the possibilities for a third party to tamper with exchanged information.

Moreover, thevotingclientallowsvoters toverify that theyareusing thecorrect softwareandparameters.
However, we noticed that the texts that are actually displayed to the voters are not validated by the voting
client. Voters still have the possibility to manually validate the integrity of those texts based on their
printed material.

	1 Introduction
	1.1 Context
	1.2 Execution of the work
	1.3 Executive summary

	2 Channel Security Signatures
	2.1 Configuration Phase
	2.2 Voting Phase
	2.3 Tally Phase

	3 Creating error situations
	3.1 Casting a vote with an invalid partial choice code
	3.2 Modifying signed parameters
	3.3 Removing signatures
	3.4 Creating inconsistency in the tally phase

	4 Voting client security and Authenticated Data
	4.1 Security of the JavaScript code
	4.2 Authenticated data

	5 Technical security tests
	5.1 Analysis of Open Ports
	5.2 Analysis of exposed REST endpoints
	5.3 Other configurations
	5.4 Scanning for vulnerabilities

	6 Conclusions

