Security audit of the e-voting backend
version 1.4.3

CLIENT Swiss Federal Chancellery CLASSIFICATION Public

DATE July 26, 2024 AUTHORS Philippe Oechslin, Delphine
VERSION 1.0 Peter

GITCOMMIT ee62970 DISTRIBUTION Swiss Federal Chancellery
STATUS Final MODIFICATIONS

OBJECTIF SECURITE

Contents

1.1
1.2
1.3

2.1
2.2
2.3

3.1

3.2
3.3
3.4

4.1
4.2

5.1
5.2
5.3
5.4

Introduction
Context
Execution of the work
Executive summary

Channel Security Signatures
Configuration Phase
Voting Phase
Tally Phase

Creating error situations
Casting a vote with an invalid partial choice code
Modifying signed parameters
Removing signatures
Creating inconsistency in the tally phase

Voting client security and Authenticated Data
Security of the JavaScript code
Authenticated data

Technical security tests
Analysis of Open Ports
Analysis of exposed REST endpoints
Other configurations
Scanning for vulnerabilities

Conclusions

0S

0S Objectif Sécurité SA
Route Cité-Ouest 19 - CH-1196 Gland
+4122 364 8570 - info@objectif-securite.ch

N~ B~ AN AN N o o

O o o o1 O1

1 Introduction

1.1 Context

1.2

N

3N

The goal of this audit was to examine the security of the server-side parts of the e-voting systems based
on the publicly available end-to-end test system.

Swiss post publishes the end-to-end test system as a set of docker containers and configuration data'.
This makes it possible to run a complete election event on a local machine.

Obviously, alocal end-to-end system does not have all the security controls that exist in the real produc-
tion environment. But since it uses the same code, it allows testing security aspects that do not depend
on the production environment.

Two previous versions of the end-to-end system had already been audited by Objectif Sécurité. Additional
tests were conducted on the latest released version (1.4.3).

Execution of the work

The security audit was conducted in July 2024 from Objectif Sécurité's premises.

All tests were performed on version 1.4.3 of the end-to-end system, which was the latest released version
at the time of the audit. The three instances of Secure Data Managers(SDMs)as well as the Data Integra-
tion Service (DIS)and the Verifier were run on a Windows virtual machine (VM), while all docker containers
were installed on a Linux VM.

Furthermore, our analysis of the end-to-end system was based on the following documentation as pub-
lished on Swiss Post's GitLab repository?:

+ Swiss Post Voting System, System Specification, v1.4.1
« Cryptographic Primitives of the Swiss Post Voting System, v1.4.1
« E-Voting Architecture Document, v.1.4.0

Previous versions® of the end-to-end system have been audited in 2022 and 2023. Results obtained on
these versions are detailed in our previous reports. Note that all tests performed during these previous
audits were run again on version 1.4.3 of the system.

https://gitlab.com/swisspost-evoting/e-voting/evoting-e2e-dev
https://gitlab.com/swisspost-evoting/
versions 0.15.2.1 and 1.3.2.1

July 26, 2024 1 Public

https://gitlab.com/swisspost-evoting/e-voting/evoting-e2e-dev
https://gitlab.com/swisspost-evoting/
versions%200.15.2.1%20and%201.3.2.1

Introduction OS

Executive summary
The analysis of the results of the tests led us to the following conclusions:

All sensitive data protected by signatures: We were able toverifythatall messagesrequiredtobe signed
accordingto the specification are indeed signed in the implementation. Furthermore, we intercepted
and modified several messages exchanged between the backend components in order to detect po-
tential issues in the signature validation. All our tested resulted in an error raised by the recipient,
which detected an invalid signature in the tampered messages.

Client software and parameter integrity validation: The voters can use a published hash to verify that
they are using the correct software. This software verifies all parameters, including the public key
used forencryption. The verification is done with a hash of all parameters that is stored in the authen-
ticated data of the voter's keystore. Thus, when a voter types in the Start Voting Key that is printed on
their material, that key is used both to decrypt a secret that will allow them to vote and to verify that
the correct parameters will be used to vote.

Displayed texts not validated by the voting client: Althoughallvoting parametersare properly validated
by the voting client through authenticated encryption, the corresponding authenticated data do not
include the texts that are actually displayed in the voter's browser. One could thus modify the ques-
tions or the voting options shown to the voters in order to influence their choices. Nevertheless, ma-
nipulations of the voting options'texts can be detected with the return codes, and the question texts
can also be compared with those displayed on the printed material.

No technical flaws detected: We did not discover any vulnerabilities in the backend components that
would allow an attacker to manipulate the end-to-end system operations. Some default or weak pa-
rameters were found in the containers' configuration, but they are most likely only applied in test en-
vironments.

July 26, 2024 2 Public

2 Channel Security Signatures

The computational proofs rely on messages' authenticity which is not given in the communication chan-
nels. To achieve this property, the cryptographic protocol adds signatures to most messages. These
signatures are detailed in section 7 of the System Specification.

We set up the system in a way that we could eavesdrop on all communications and verified the presence
of the signatures listed in the specification. The signatures are given in tables 15, 16 and 17 of the System
Specification.

2.1 Configuration Phase

Message Name Signer Recipient(s) Message Content Context Data
1 ElectionEventContext Setup Comp. Online CC;, P, 4G, 9, seed, P, Nigay , Ynax “election event context”,
2
Tally CC. Tres ee)
N ’ Table, N
Taly OO e pTable)
Voting Server
2 CantonConfig Canton Setup Comp., configuration XML (“configuration”)
Auditors,
Tally CC
3 ControlComponentPublicKeys Online CCy Setu.p Comp., (pkchJ ST pkCCR, 45 ELp 5 (“OnlineCC keys”, j, ee)
Auditors "'Eka._,‘)
SetupComponent Verification- Setup Comp. Online CC;, VCid, Kid, Cpoc.ids “yerification data”, ee,
4 ¢l o
Data Auditors C:k.u}?é;‘l,. Lycc) ves)
5 ControlComponent CodeShares Online CC; Setup Comp., weyg, Koo, e g, “encrypted code shares”,
P ' p P it KE g a ¥p
Auditors CoxpPCC, j.id » Cexpll.jids j.ee,ves)
TexpPCC, j.ids

Ng—1
MexpCKj.id} e

6 SetupComponent LV CCAL Setup Comp. Online CC; Lives (“lvec allow 1ist”, ee,
lowList wes)
7 SetupComponentEvotingPrint Setup Comp. Printing evoting print XML (“evoting print”)
Comp.
8 SetupComponentCMTable Setup Comp. Voting Server CMtable® (“cm table™, ee,ves)
9 SetupComponent Verification- Setup Comp. Voting Server VCks (“vc keystore”, ee, ves)
CardKeyStores
10 SetupComponentVoter Authen- Setup Comp. Voting Server (credentialID, hAuth) (“voter authentication”,
ticationData ae,ves)
11 SetupComponentPublicKeys Setup Comp. Online CC;, 4 kaCR_J, TokCCR, i+ (“public keys”, “setup”,
Tall):' e, Elyi) TELpks }_1:1‘ EBp, ae)
Auditors, R, EL k)
Voting Server BB Elpk) PXOCR
12 SetupComponentTallyData Setup Comp. Auditors, (ve, K) (“tally data”, ee,ves)
Tally CC
13 SetupComponent Electoral- Setup Comp. Tally CC (hPWy, . .., BPW 1) (“electoral board hashes”,
BoardHashes ee)

Figure 2.1 Table 15 of the document: messages of the configuration phase

D We numbered the messages from 1to 13. We successfully verified that messages 1to 11 are signed. Mes-
sages 12 and 13 seem to correspond to the files transmitted from the Setup SDM to Verifier and Tally CC.
Those files are encrypted, so we could not verify if they contain a signature.

D We verified that the CMtable is correctly ordered alphabetically according to the base64 value of its first
column.

July 26, 2024 3 Public

Channel Security Signatures

2.2 Voting Phase

Message Name

Signer

Recipient(s)

Message Content

Context Data

VotingServer EncryptedVote
ControlComponentPartialDe-
crypt
ControlComponentLCCShare

VotingServer Confirm

ControlComponenthlVCC

ControlComponent!VCCShare

Voting server
Online CCy
Online CC;
Voting server

Online CC;
Online CC;

Online CC;
Online CCj
Voting Server
Online CC;

Online CC;

Voting Server

(E1,E2, E1, Teup, Trgzae)
(dy, Taecrco 5]
ICCj 14

CKia

R1VCCy4

1VCCia

(“encrypted vote”, ee, vcs,
veiq)

(“partial decrypt”,j, ee,
ves,veid)

(“lcc share”, j, ee,ves,
vCig)

(“confirmation key”, ee,
VES, Ve)

(“hlvec”, j, ee,ves, vegg)

(“lvcec share™, j, ee,vcs,
veiq)

Figure2.2 Table 16 of the document: messages of the voting phase

D We observed all messages with their respective signatures.

2.3 Tally Phase

Message Name

Signer

Recipient(s)

Message Content

Context Data

1 ControlComponentVotesHash

2 ControlComponent Ballot Box

3 ControlComponentShuffle

4 TallyComponentShuffle
5 TallyComponentVotes

6 TallyComponentDecrypt
7 TallyComponentEch0222
8 TallyComponentEch0110

Figure 2.3

Online CCy
Online CC;

Online CC;

Tally CC
Tally CC

Tally CC
Tally CC
Tally CC

Online CCj

Tally CC,
Auditors

Online CCJ-a)
Tally CC,
Auditors

Auditors
Auditors

Auditors
Auditors
Auditors

hvey

({vey, B i, E150,E2 5,
-1

TMExp,j.i- TEgEne, 5,1 } i=0)

(€omise, > Tonix, 5 > Cdec. > Welee,)

(€mi, 5 s Tmix 55 100, Meac,5)

(Lvates, Ldecodedvotes,
Lwnt.e\m)

evoting decrypt XML
eCH 0222 XML
eCH 0110 XML

(“voteshash”, j, ee,bb)

(“ballotbox”, j, ee, bb)

(“shuffle”, j, ee, bb)

(“shuffle”, “offline”, ee
bb)

(“decoded votes”, ee, bb)

(“evoting decrypt”)
(“eCH 02227)
(“eCH 01107)

Table 17 of the document: messages of the tally phase

We observed the signatures of the first three messages, as well as the signatures included in the three
files generated by the Tally CC(messages 6 to 8 in Table 17).

Again, messages 4 and b are transmitted to the Verifier through an encrypted file generated by the Tally
CC. We were thus unable to verify if a signature is present in this file.

July 26,2024

Public

3

3.1

Creating error situations

We created several error scenarios to verify the correct reaction of the system.

These tests required us to intercept Artemis messages exchanged between the control components and
the voting server through the message broker. Since these packets are not encrypted in the test end-
to-end configuration, we could modify the intercepted messages in order to trigger the errors detailed
below.

Casting a vote with an invalid partial choice code

Before calculating return codes for a submitted vote, the control components first validate that the re-
ceived partial choice codes are in a defined allow-list enumerating all possible valid inputs. This guaran-
tees that the control components do not perform calculations with manipulated parameters.

We used our own voting client to submit a vote with an invalid partial choice code. As a result, we did not
receive any answer from the voting server. The latter server did not reply either when we subsequently
tried to submit a correct vote with the same voting card.

The behaviour of the system is correct in the sense that a vote with invalid pCCs will be detected when
the control components run the CreatelL CCShare algorithm, during the calculation of the return code.
Subsequent submissions of a vote are blocked because the voting card has been recorded in the list

Lyecpcc OF cards for which a pCC has already been decrypted.

We checked the logs of the end-to-end system to verify whether the lack of answer was due to a correctly
intercepted error or to a crash of the program.

We indeed observed an errorin all control components'logs, which was properly caught:

$ docker logs control-component-1
Caused by: java.lang.IllegalStateException: Failed to execute exactly once command
at ch.post.it.evoting.controlcomponent.ExactlyOnceCommandExecutor.process(ExactlyOnceCommandExecutor.java:94)
~[!/:1.4.3.0]
Coood
. 10 common frames omitted
Caused by: java.lang.IllegalStateException: The partial Choice Return Codes allow list does not contain the partial
Choice Return Code.
at ch.post.it.evoting.controlcomponent.protocol.voting.sendvote.CreateLCCShareAlgorithm.lambda$createLCCShare$0(Cre-
ateLCCShareAlgorithm.java:119) ~[!/:1.4.3.0]

July 26, 2024 5 Public

Creating error situations OS

3.2 Modifying signed parameters

As mentioned in chapter 2, all messages exchanged between the control components, the Online SDM
and the voting server are signed. We tried to intercept and modify several of these messages in order to
verify if their signatures are properly validated by the recipients. The following scenarios were tested:

1. Request CC Keys : In the configuration phase, the control components send their public keys to the
Online SDM over HTTP. These public keys are used during the voting phase to encrypt the partial
Choice Return Codes. We intercepted the HTTP response containing those keys and modified the
first control component's key.

O This manipulation is detected by the Setup SOM when the Electoral Board is constituted. The follow-
ing error is displayed in the Setup SDM's logs:

java.util.concurrent.CompletionException: ch.post.it.evoting.domain.InvalidPayloadSignatureException: Signature of

payload ControlComponentPublicKeysPayload is invalid. [electionEventId: F5654BC3A3D4345FAADB32A5F5217346, nodeld: 2]

Cooodl

Caused by: ch.post.it.evoting.domain.InvalidPayloadSignatureException: Signature of payload

ControlComponentPublicKeysPayload is invalid. [electionEventId: F5654BC3A3D4345FAADB32A5F5217346, nodeld: 2]
at ch.post.it.evoting.securedatamanager.setup.process.constituteelectoralboard.
ControlComponentPublicKeysConfigService.validateSignature(ControlComponentPublicKeysConfigService.java:112)
Coood

O Note that the signatures of the public keys are validated by the Setup SDM, and not by the Online SDM
which requests them. Thus, the Online SDM indicates that the keys have been successfully retrieved
(see figure 3.1). The error is only displayed when one tries to subsequently constitute the Electoral
Board with the Setup SDM(see figure 3.2).
Even though the message displayed by the Online SDM might be misleading, we did not find a way to
complete the configuration phase with a tampered control component encryption key.

Request Encryption Keys of the Control Components

Please wait for the request CC keys to complete.

@ The Reguest Encryption Keys of the Control Components has been completed,

@ Oh 00m 03s 1007.2024,17.26:25 - 10.07.2024, 17:.26:28

Figure 3.1 Success message displayed by the Online SOM when a control component's
public key has been tampered with

Constitution of the Electoral Board

Flease setyour electoral board passwaord,

The constitution of the electaral board has failled. Please try again.
@3 0k 00m 043 10072024, 17.37:50 - 10,07.2024, 173755

Figure 3.2 Error message displayed by the
Setup SDM upon Electoral Board constitution

July 26, 2024 6 Public

Creating error situations OS

Ideally, the Online SDM could verify the signatures and prevent the tampered data to be delivered to
the Setup SDM.

2. PartialDecryptPCC : When a vote is submitted, each control component runs the PartialDecryptPCC
algorithm on the received encrypted vote and sends the partially decrypted PCCs along with expo-
nentiation proofs to the other CCs in order to complete decryption. We modified the result of the
PartialDecryptPCC algorithm (exponentiatedGammas)sent from CC1to the other CCs through the voting
server.

The following error was observed in the receiving CCs'logs:

org.springframework. jms.listener.adapter.ListenerExecutionFailedException: Listener method 'public <T,U> void
ch.post.it.evoting.controlcomponent.MessageHandler.onMessage(jakarta.jms.Message) throws jakarta.jms.JMSException'
threw exception

[...]

Caused by: ch.post.it.evoting.domain.InvalidPayloadSignatureException: Signature of payload

ControlComponentPartialDecryptPayload is invalid. [contextIds:
ContextIds[electionEventId=F6BO99CACT1C51075E70B780A4BA1DB27, verificationCardSetId=02117EB17A4A01E86FDDODBIF3B7E39D,
verificationCardId=6CFE22CC190776263D3DED6BAF2D39FD]]

[...]

3. CreateLVCCShare : When calculating the finalisation code, the control components exchange their
partial results(from CreateLVCCShare)and check that the combination of the resultsisinan allow-list
(VerifyLVCCHash). Only then do they reveal to the voting server the information needed to calculate
the finalisation code.

We intercepted the traffic between the voting server and a control component and modified the mes-
sage containing the confirmation key CK;,, which is used as input for the Createl. VCCShare algorithm.
Note that this message is signed by the voting server.

The modification is detected, and no finalisation code is generated. There is a timeout. The control
component that received the manipulated value has the following log entry:

org.springframework. jms.listener.adapter.ListenerExecutionFailedException: Listener method 'public <T,U>
void ch.post.it.evoting.controlcomponent.MessageHandler.onMessage(jakarta.jms.Message) throws
jakarta.jms.JMSException' threw exception
Cooodl
Caused by: java.lang.IllegalStateException: The signature is not valid. [requestMessageType:
ch.post.it.evoting.domain.voting.confirmvote.VotingServerConfirmPayload, correlationId:
462684ea-€a39-4722-8762-a6672299badb, nodeld: 1]
[...]

After tallying, we can confirm that the vote is not part of the votes that have been tallied.

4. VerifyLVCCHash:

As mentioned in the previous paragraph, the control components verify that the long Vote Cast Re-
turn Codes calculated by all four control components (in the CreateLVCCShare algorithm) are valid,
according to a pre-defined allow-list. This is the VerifyLVCCHash algorithm.

We intercepted the VerifyLVCCHash request sent to CC4 and modified the hash computed by CC1.

July 26, 2024 7 Public

)

)

Creating error situations OS

This modification is detected, and no finalisation code is generated. There is a timeout. CC4, which
received the manipulated request, has the following log entry:

org.springframework. jms.listener.adapter.ListenerExecutionFailedException: Listener method 'public <T,U> void
ch.post.it.evoting.controlcomponent.MessageHandler.onMessage(jakarta.jms.Message) throws jakarta.jms.JMSException'
threw exception

[...]

Caused by: java.lang.IllegalStateException: The signature is not valid. [requestMessageType:
ch.post.it.evoting.domain.voting.confirmvote.ControlComponenthlVCCRequestPayload, correlationId:
88dceael-2dcd-4935-8526-e1490ac0b275, nodeld: 4]

Looodl

5. MixDecOnline: In the MixDecOnline algorithm run in the tally phase, the control components succes-
sively compute partially decrypted and shuffled votes, as well as the corresponding proofs. We in-
tercepted the message containing the MixDecOnline result computed by CCTand transmitted to CC2,
and modified the decryption proofs.

This modification is detected and the Mixing phase fails. CC2, which received the manipulated mes-
sage, has the following log entry:

Unable to consume message: Signature of payload ControlComponentShufflePayload is invalid. [nodeld: 1,
electionEventId: 20B4AEQC3D63046E6CATDAAF1D59EFFF, ballotBoxId: D87E813E98501A755C434E7F163CDF27]

3.3 Removing signatures

Since all our attempts to modify signed parameters resulted in errors indicating that the message's sig-
nature is invalid (see section 3.2), we tried to remove signatures in several messages in order to verify if
itisindeed required for the recipient to proceed with the expected operation.

In this experiment, we tampered with the following messages:

« Configuration phase: we removed the signature of the control components' public keys sent to the
Online SDM (message 3 in figure 2.1)

« Voting phase: we removed the signatures of all messages listed in figure 2.2

» Tally phase: we removed the signature of the MixDecOnline result computed by a control component
(message 3 in figure 2.3)

In each case, the modification is detected and the receiving party refuses to process the tampered mes-
sage. ANullPointerException is shown in the recipient's logs when the message is parsed:

org.springframework. jms.listener.adapter.ListenerExecutionFailedException: Listener method 'public <T,U> void
ch.post.it.evoting.controlcomponent.MessageHandler.onMessage(jakarta.jms.Message) throws jakarta.jms.JMSException' threw
exception
[...]
Caused by: com.fasterxml.jackson.databind.exc.ValueInstantiationException: Cannot construct instance of
“ch.post.it.evoting.evotinglibraries.domain.signature.CryptoPrimitivesSignature®, problem:java.lang.NullPointerException
Cooodl
Caused by: java.lang.NullPointerException: null

at com.google.common.base.Preconditions.checkNotNull(Preconditions. java:906) ~[guava-33.2.1-jre.jar!/:nal

at ch.post.it.evoting.evotinglibraries.domain.signature.CryptoPrimitivesSignature.<init>

(CryptoPrimitivesSignature.java:30) ~[e-voting-libraries-domain-1.4.3.0.jar!/:1.4.3.0]

July 26, 2024 8 Public

3.4

Creating error situations OS

Creating inconsistency in the tally phase

As detailed in the 4 experiment described in section 3.2, we triggered an error in the VerifyLVCCHash
algorithm by modifying one of the hash shares that are exchanged between the control components
(htvCC,,) for validation.

The control component that receives the modified hash will not register the vote as confirmed in the
ballot box, whereas the three other components will.

Inour previous audit, which was conducted onversion 1.3.2.10f the end-to-end system, thisinconsistency
led to the following error in the second control component's logs:

The initial ciphertexts vector and verifiable shuffles ciphertexts vector must have the same size.

In order to avoid the size differences in the ciphertext vectors handled by the control components during
mixing, we conducted a new test on the latest version of the system(1.4.3): the same manipulation of the
VerifyLVCCHash request was performed on four different votes, once for each control component. In this
way, they would all have the same number of votes, since each control component would have discarded a
different one. This situation would not be detected by the consistency check that compares the number
of initial votes with the number of shuffled votes.

We indeed did not obtain the above error message in the control component's logs upon mixing. However,
the voting server still detects the manipulation and outputs the following error, which makes the tally
phase fail:

Unable to consume message: All Control Component Votes Hash Payloads must have the same encrypted confirmed votes hash.
[...1

Caused by: java.lang.IllegalArgumentException: All Control Component Votes Hash Payloads must have the same
encrypted confirmed votes hash.

at com.google.common.base.Preconditions.checkArgument(Preconditions.java:145)

This is due to a new validation added to the MixOnline algorithm since our previous audit: each control
components now sends the hash generated from the list of encrypted confirmed votes it registered (Get-
MixnetInitialCiphertexts) to the voting server before starting mixing. The voting server then returns an
error if those hashes differ, and the mixing fails. Thus, we could not reproduce the scenario observed in
our previous audit, because the tally phase fails before comparing the ciphertext vectors.

It should be noted that the voting serveris not considered as trusted, so the other parties involved in the
tally phase should perform a similar check on the hashes to detect such manipulations, and not solely rely
on the voting server. We were not able to bypass the voting server's verification in order to confirm that
the CCMs actually perform a similar check, but the system documentation states that they do.

July 26, 2024 9 Public

4

4.1

4.2

Voting client security and Authenticated
Data

Security of the JavaScript code
When the voter accesses the home page of the voting server, four JavaScript files are loaded:

- runtime.js

- polyfills.js

- crypto.ov-api.js
- main.js

They contain the code of the voting client. For each JavaScript file, an integrity tag containing a hash of
the file is provided, e.g.:

<script src="runtime.js"

integrity="sha384-YwZU+MORWirxGUXpR82bV38PfKIXCaly70I8xk3X03I+rHG5znVHx9+02CX0YUS6">

[..]
</script>
Voters have the possibility to compare this hash to known good hashes on the web sites of the cantons.
They can trust their browsers to verify the hash of the files or download the files and verify the hash with
atool they trust.

Furthermore, they can compare the content of the HTML file that loads the hashes with a known good
copy on the web sites of the cantons.

If they trust the known good sources, the voters can thus be sure that they are being served the correct
voting client from the voting server.

Authenticated data

Once the voting client is loaded, and after the voter has authenticated, the client receives all the neces-
sary parameters and data from the voting server.

One key parameter is the private key that the voter needs to carry out the cryptographic protocol. Itis
received inakeystore thatis encrypted with a key derived from the Start Voting Key (SVK)which is printed
on the voting material. The voter can thus only vote if they type in the correct SVK.

Additionally to the private key, the keystore also carries a hash of all cryptographic parameters and of
the semantic of the ballot. The voting client verifies that the hash matches a hash calculated with the
parameters that were actually received by the client. The list of parameters that are fed into the hash are
given in the GetHashContext algorithm of the protocol specification as seen in figure 4.1.

If the hashes do not match, the voting client refuses to vote. We verified this behaviour in the source code
of the client and during our online test.

If the voter thus verifies the integrity of the voting client downloaded from the home page, they will know
that the voting client will only proceed if none of the parameters received by the server have been tam-
pered. The mare inclined voters may even calculate the hash of the parameters and verify it themselves.

July 26, 2024 10 Public

Voting client security and Authenticated Data oS

Algorithm 3.11 GetHashContext

Context:
sroup modulus p € P
Group cardinality ge Pst. p=2¢+1
Group generator g € G,
Election event 1D ee € (Agyes)'™
Verification card set ID ves € (Apgqeers)'™
Primes mapping table pTable € (T x (G, NP)\ g) x Apes” x T7")" & pTable is of the

form ((VU‘ f‘EJ: To, TO)‘ e (Vn 1 I:’vl 1:Tn-1,Tn l}) .
Election public key ELp = (ELpyg, - . -, ELpig,., 1) € Gr':“"
Choice Return Codes encryption public key pkocp = (PRecnor - - PRecR 1) € Gy
Operation: & As indicated in section 1.4 we flatten the lists and avoid nested structures
1 ho ()
2: h < (h, “EncryptionParameters”, p,q,g)
3: h + (h,“ElectionEventContext”, ee, vcs)
4: h 4 (h,“ActualVotingOptions”, GetActualVotingOptions(()}) = See 3.4
5: h < (h, “EncodedVotingOptions”, GetEncodedVotingOptions(())) & See 3.3
G: h < (h, “SemanticInformation”, GetSemanticlnformation()) > See 3.5
7: h + (h, “CorrectnessInformation”, GetCorrectnessinformation((})) > See 3.6
& h o+ Ul-, Eka Eka.[]-. - ‘ELPk-&---—I}
9: h 4= (h, “"pkCCR”, Pkecp g - - - PROCR 1)
10: d + Baseb4Encode(RecursiveHash(h)) & See erypto primitives specification
Output:
The digest d € & goeoss ™ & lygss 15 the character length of the Base6d encoded hash
output

Figure 4.1 Hash Context: List of parameters that are included in the hash which is ver-
ified when decrypting the private key of the voter

Une erreur inattendue s'est produite (code d'état : inconnu). Veuillez réessayer plus tard ou contacter 'équipe d'assistance.

Figure 4.2 Error displayed when one of the parameters of the Hash Context has been
tampered with

Although the authenticated parameters include the actual voting options(i.e. yes, no, list and candidate
names) and the semantic information (text of the questions) it does not include the text that is actually
displayed to the voters. This text, in all four national languages, is indeed part of a structure called bal-
lotTexts, which is not authenticated.

The voters can detect manipulation of the text of voting options by comparing the return codes with the
codes printed on their voting material. They can detect the manipulation of the questions(e.g. ‘do you
accept’ vs ‘'do you reject’) by reading the questions on their printed material. Still, the voting client would
be more secure if the hash of the ballot texts was also included in the information that is authenticated
along with the other voting parameters.

July 26, 2024 11 Public

5

5.1

5.2

Technical security tests

Analysis of Open Ports

The voting server and the four control components have an open port for debugging. The port gives ac-
cess tothe Java Debug Wire Protocol (UDWP). This protocol can be abused to execute arbitrary command
on the machine.

The debugging portisactivated fromthe command line when starting the application with the parameter:

-agentlib: jdwp=transport=dt_socket,address=*:<port>, server=y, suspend=n

This parameter is set in the common configuration file (docker-compose . common.yml) for the five docker
containers mentioned above.

We assume that this parameter is not set in production environments.

Other than JOWP, which is valid in a test environment, we did not discover any unnecessarily open ports.

Analysis of exposed REST endpoints

The voting server offers a set of REST endpoints that are used to interact with the end-to-end system's
backend. For example, the following endpoint allows to retrieve all used voting cards for a given election
event ID:

/vs-ws-rest/api/v1/voting-card-manager/used-voting-cards/election-event/{electionEventId}
Unlike the previously tested version of the end-to-end system, the backend APl is nolonger split over mul-

tiple microservices representing the different phases of the process and running in separate containers.
Now, the entire backend APl is handled by the voting-server container.

Although the APl endpoints are no longer listed in the application logs on startup, we could retrieve them
from the source code.

We analysed the lists of endpoints available to check if there was a service that would give access to
protected information or functionality, maybe for debugging purposes. We did not identify any endpoint
that did not seem to be legitimate.

Note that the control components do not expose any REST endpoint. They connect to an ActiveMQ mes-
sage broker they can exchange messages with.

July 26, 2024 12 Public

Technical security tests oS

5.3 Other configurations
We noticed some default or weak configurations applied to the end-to-end system's docker containers:

« Default credentials are configured for the Artemis ActiveMQ administration console

« Weak credentials are configured for the database used by the voting server and the control compo-
nents

« Artemis messages are exchanged in cleartext between the voting server and the control components
(through the message broker)

« HTTP trafficis also sentin cleartext between the Online SDM and the voter portal, as well as between
the voter portal and the voting server

O These configurations are acceptable in a test environment but should not be used in production. We
assume that production systems use more secure parameters.

5.4 Scanning for vulnerabilities

The docker containers only contain the minimal set of programs needed for e-voting. We scanned the
containers with a vulnerability scanner and also checked the version of some of the software manually.

O All software seems to be up-to-date with no known vulnerabilities.

July 26, 2024 13 Public

6 Conclusions

We conducted various tests on the backend components of the end-to-end e-voting system. This audit
did not reveal any vulnerability in the implementation of the backend systems.

In particular, all sensitive data exchanged between the various backend components in the three phases
(configuration, vote, tally) are signed by the sender and the latter signature is properly validated by the
recipient. This greatly reduces the possibilities for a third party to tamper with exchanged information.

Moreover, the voting client allows voters to verify that they are using the correct software and parameters.
However, we noticed that the texts that are actually displayed to the voters are not validated by the voting

client. Voters still have the possibility to manually validate the integrity of those texts based on their
printed material.

July 26, 2024 14 Public

	1 Introduction
	1.1 Context
	1.2 Execution of the work
	1.3 Executive summary

	2 Channel Security Signatures
	2.1 Configuration Phase
	2.2 Voting Phase
	2.3 Tally Phase

	3 Creating error situations
	3.1 Casting a vote with an invalid partial choice code
	3.2 Modifying signed parameters
	3.3 Removing signatures
	3.4 Creating inconsistency in the tally phase

	4 Voting client security and Authenticated Data
	4.1 Security of the JavaScript code
	4.2 Authenticated data

	5 Technical security tests
	5.1 Analysis of Open Ports
	5.2 Analysis of exposed REST endpoints
	5.3 Other configurations
	5.4 Scanning for vulnerabilities

	6 Conclusions

