
 - 1 -

CLASSIFICATION PUBLIC
REFERENCE P021121
PROJECT MANAGER SCRT
CUSTOMER Federal Chancellery
LAST MODIFIED 2023-08-07

EVOTING WEB APPLICATION (1.3.1.1)

SECURITY AUDIT REPORT

JULY 2023

RUE DU SABLON 4
1110 MORGES
SWITZERLAND

TÉL : +41 21 804 64 01
FAX : +41 21 804 64 02

WWW.SCRT.CH
INFO@SCRT.CH

P021121 | Evoting Web Application (1.3.1.1) 2

Client contact information

Federal Chancellery

SCRT SA contact information

SCRT SA
Rue du Sablon 4
1110 Morges
Suisse

Versions

DATE VERSION AUTHOR DESCRIPTION

2023-07-21 0.1 SCRT Report writing

2023-07-26 0.2 SCRT Initial release

2023-08-07 1.0 SCRT Final release

P021121 | Evoting Web Application (1.3.1.1) 3

TABLE OF CONTENTS

Executive summary .. 4

Results summary .. 4

High level impressions ... 4

Security dashboard .. 5

Scope .. 5

Risks by level .. 5

Risks by remediation .. 5

Global risk level .. 5

Status by attacker profile ... 5

Identified risks .. 6

Proposed remediation plan ... 6

Technical summary .. 7

Scope .. 7

Restrictions .. 7

Results .. 7

Vulnerability summary ... 8

Additional remarks ... 9

Reflected host header .. 9

Dependency confusion .. 9

Content-Security-Policy weakness ... 12

Detailed results .. 13

Vulnerabilities and exploitation ... 13

P021121-01 Use of outdated system or software ... 13

Complements ... 15

Legend .. 15

SCRT Score ... 15

CVSS Score ... 15

Risk calculation .. 16

Context ... 16

Attempted attacks ... 16

Attack scope ... 16

Search for known vulnerabilities (vulnerability scanning) .. 16

Network protocol analysis ... 17

Weak and default passwords discovery .. 17

Web applications ... 18

Network sniffing ... 18

Exploiting vulnerabilities .. 18

Additional attacks .. 19

Man-In-The-Middle .. 19

Social Engineering .. 19

P021121 | Evoting Web Application (1.3.1.1) 4

EXECUTIVE SUMMARY

RESULTS SUMMARY

SCRT was contracted by the Federal Chancellery to assess the security of the E-voting web
application developed by Swiss Post. To this end, SCRT acted like real attackers and searched
for vulnerabilities and weaknesses within the application to determine the risk for the voters
and the secrecy and integrity of their votes.

SCRT reviewed the source code and performed dynamic analysis of a production environment
and a test platform. Very strict security rules applied by the Web Application Firewall on the
production environment drastically reduce the attack possibilities. SCRT therefore also
attempted attacks against a locally setup instance which was not protected by a Web
Application Firewall.

Throughout the audit, SCRT was unable to affect the integrity or confidentiality of any vote
within the e-voting servers. Some minor issues were discovered and documented in the
Vulnerabilities and exploitation and Additional remarks sections of this report, but none of
them were actually exploitable during this assessment.

The secrecy of the vote of a targeted individual could potentially still be compromised through
spear-phishing attacks as detailed in the previous report. This issue has not been reproduced
in the current report.

Overall, SCRT found that the application and its infrastructure are well hardened, with
additional in-depth protections implemented between the users and the server. Hence, the
overall risk level of using the E-voting web application is considered as low.

HIGH LEVEL IMPRESSIONS

STRENGTHS

WAF configuration

Parameter filtering and validation

Limited attack surface

WEAKNESSES

Outdated component

P021121 | Evoting Web Application (1.3.1.1) 5

SECURITY DASHBOARD

SCOPE

Type White-box

Scope Web application

Positioning SCRT Offices

Schedule 2023-07-17 – 2023-07-21
Effort 15 days

Consultants 3

RISKS BY LEVEL

RISKS BY REMEDIATION

GLOBAL RISK LEVEL

ATTACKER PROFILES RISK LEVEL

Without voting card

With voting card

Secure Data Manager context

STATUS BY ATTACKER PROFILE

OBJECTIVES
WITHOUT

VOTING CARD
WITH VOTING

CARD
SECURE DATA

MANAGER CONTEXT

Gain access to the internal network

Execute arbitrary commands

Vote confidentiality and integrity

Application infrastructure

 NOT COMPROMISED PARTIALLY COMPROMISED COMPROMISED

P021121 | Evoting Web Application (1.3.1.1) 6

IDENTIFIED RISKS

ID RISK LEVEL RISK DETAILS
RELATED
FLAWS

FIX

1 LOW
The use of outdated packages in the build
dependencies increases the likelihood of a vulnerability
being exploitable, even though none currently are.

P021121-01

 EASY MEDIUM HARD

PROPOSED REMEDIATION PLAN

ID ACTION DIFFICULTY
RELATED

RISKS

1 Use the latest version of potentially vulnerable packages. HARD 1

P021121 | Evoting Web Application (1.3.1.1) 7

TECHNICAL SUMMARY

SCOPE

The scope of the audit includes the e-voting web application (release 1.3.1.1), which was
reachable during the audit at the following address:

» https://pit.evoting.ch/

Auditors were able to generate as many voting cards as needed during the tests.

The source code is also available online:

» https://gitlab.com/swisspost-evoting/e-voting/e-voting

RESTRICTIONS

No social engineering or denial of service attacks were performed during this audit.

RESULTS

While the main goal was to attack the testing environment available at
https://pit.evoting.ch, SCRT engineers first decided to locally deploy the application
to gain full control over the server and to increase the probability of finding security bugs. This
part of the audit allowed SCRT engineers to identify potential weaknesses in the building
process which could lead under specific condition to the compromise of the solution.

Indeed, as detailed in the Additional remarks section of this report, an attacker who
temporarily manages to control the DNS entries of the post.ch domain could potentially be
able to compromise future builds of the project. The exploitation of this issue highly depends
on the configuration of the building environment which is not directly part of the scope of this
audit. As a result, SCRT engineers could not confirm the exploitability of the issue during the
time frame of the tests. However, given the trendiness of this type of vulnerability at the time
of writing the report, it was deemed worth mentioning.

In addition, the review of the building process and the project dependencies allowed
engineers to detect that some of the dependencies embed vulnerable packages which could
lead to denial of service or arbitrary code execution. However, those vulnerabilities require
specific prerequisites, none of which were present in the test environment. Nevertheless, it is
advised to determine whether vulnerable packages can be updated and update them
accordingly when possible.

Then, SCRT engineers reviewed the source code of the different components both manually
and using automated tools. In addition, they also performed several tests aimed at detecting
potential weaknesses such as bugs in the logic of the application or potential injections which
could endanger the integrity and the privacy of the vote. However, engineers were not able
to identify vulnerabilities in the application during the allotted time of the audit.

P021121 | Evoting Web Application (1.3.1.1) 8

Moreover, SCRT auditors noticed that the online application is further protected by a Web
Application Firewall (WAF) which severely restricts the requests that can be made by external
users to the E-Voting server and thus reduces the attack surface. The WAF appropriately
whitelists both the accessible URLs and parameters which can be sent.

VULNERABILITY SUMMARY

ID VULNERABILITY IMPACT PROBABILITY CVSS

P021121-01 Use of outdated system or software ★☆☆☆ ☆☆☆☆ 3.7

Explanations regarding impact, exploitation and CVSS scores can be found in chapter Complements

P021121 | Evoting Web Application (1.3.1.1) 9

ADDITIONAL REMARKS

REFLECTED HOST HEADER

It was noticed that if the X-Forwarded-For header was added to a valid request, a
redirection was triggered because the request is detected as being suspicious. In this case, the
Host header from the requests is then reflected in the response. Below an example of such
behaviour:

Request:

POST /vs-ws-

rest/api/v1/processor/voting/authenticatevoter/electionevent/71E6A4D40CA7DADB12929FBC18D442FB/crede

ntialId/F455985AA0960BE2F4086CF53C3E6C89/authenticate?reflected2/ HTTP/1.1

Host: pit.evoting.ch.reflected1

X-Forwarded-For: whatever

[...]

Response:

HTTP/1.1 302 Found

[...]

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>302 Found</title>

</head><body>

<h1>Found</h1>

<p>The document has moved <a href="https://pit.evoting.ch.reflected1/errordocuments/suspicious-

connection.html?reflected2/">here.</p>

</body></html>

Note that this only works if the term pit.evoting.ch is found somewhere within the
header. Although there doesn’t seem to be any way to exploit this in practice, it seems like
some security measure is somewhat circumvented and that the regular expression checking
the header can be improved.

DEPENDENCY CONFUSION

Dependency confusion is a trendy topic at the moment with multiple articles being written
about it, mostly targeting the NPM repository. The idea behind the attack is to identify private
repositories used by applications and then register them on a public repository. In certain
cases, a build environment might end up pulling the code from the public repository rather
than the local one.

The pom.xml file located in the directory evoting-dependencies refers to various internal
packages which are not published on the maven central repository.

P021121 | Evoting Web Application (1.3.1.1) 10

[...]

 <dependencyManagement>

 <dependencies>

 <!-- Internal dependencies -->

 <dependency>

 <groupId>ch.post.it.evoting.domain</groupId>

 <artifactId>domain</artifactId>

 <version>${domain.version}</version>

 </dependency>

 <dependency>

 <groupId>ch.post.it.evoting.commandmessaging</groupId>

 <artifactId>command-messaging</artifactId>

 <version>${command-messaging.version}</version>

 </dependency>

 <dependency>

 <groupId>ch.post.it.evoting.domain</groupId>

 <artifactId>domain</artifactId>

 <version>${domain.version}</version>

 <type>test-jar</type>

 </dependency>

 <dependency>

 <groupId>ch.post.it.evoting</groupId>

 <artifactId>voting-client-js</artifactId>

 <version>${voting-client-js.version}</version>

 <type>pom</type>

 </dependency>

 <dependency>

 <groupId>ch.post.it.evoting</groupId>

 <artifactId>voting-client-js</artifactId>

 <version>${voting-client-js.version}</version>

 <type>zip</type>

 </dependency>

 <dependency>

 <groupId>ch.post.it.evoting.controlcomponent</groupId>

 <artifactId>control-component</artifactId>

 <version>${control-component.version}</version>

 </dependency>

 <dependency>

 <groupId>ch.post.it.evoting.securedatamanager</groupId>

 <artifactId>backend</artifactId>

 <version>${secure-data-manager.version}</version>

 </dependency>

 <dependency>

 <groupId>ch.post.it.evoting.votingserver</groupId>

 <artifactId>voting-server</artifactId>

 <version>${voting-server.version}</version>

 </dependency>

 <!-- Other dependencies -->

 <!-- crypto-primitives -->

 <dependency>

 <groupId>ch.post.it.evoting.cryptoprimitives</groupId>

 <artifactId>crypto-primitives</artifactId>

 <version>${crypto-primitives.version}</version>

 </dependency>

 <dependency>

 <groupId>ch.post.it.evoting.cryptoprimitives</groupId>

 <artifactId>crypto-primitives</artifactId>

 <version>${crypto-primitives.version}</version>

 <classifier>tests</classifier>

 <type>test-jar</type>

 <scope>test</scope>

 </dependency>

 <!-- crypto-primitives-domain -->

 <dependency>

 <groupId>ch.post.it.evoting.cryptoprimitives.domain</groupId>

 <artifactId>crypto-primitives-domain</artifactId>

P021121 | Evoting Web Application (1.3.1.1) 11

 <version>${crypto-primitives-domain.version}</version>

 </dependency>

 <dependency>

 <groupId>ch.post.it.evoting.cryptoprimitives.domain</groupId>

 <artifactId>crypto-primitives-domain</artifactId>

 <version>${crypto-primitives-domain.version}</version>

 <classifier>tests</classifier>

 <type>test-jar</type>

 <scope>test</scope>

 </dependency>

 <!-- crypto-primitives-ts -->

 <dependency>

 <groupId>ch.post.it.evoting.cryptoprimitives.ts</groupId>

 <artifactId>crypto-primitives-ts</artifactId>

 <version>${crypto-primitives-ts.version}</version>

 <type>zip</type>

 </dependency>

 <!-- e-voting-libraries -->

 <dependency>

 <groupId>ch.post.it.evoting.evotinglibraries</groupId>

 <artifactId>direct-trust</artifactId>

 <version>${e-voting-libraries.version}</version>

 </dependency>

 <dependency>

 <groupId>ch.post.it.evoting.evotinglibraries</groupId>

 <artifactId>domain</artifactId>

 <version>${e-voting-libraries.version}</version>

 </dependency>

 <dependency>

 <groupId>ch.post.it.evoting.evotinglibraries</groupId>

 <artifactId>protocol-algorithms</artifactId>

 <version>${e-voting-libraries.version}</version>

 </dependency>

 <dependency>

 <groupId>ch.post.it.evoting.evotinglibraries</groupId>

 <artifactId>xml</artifactId>

 <version>${e-voting-libraries.version}</version>

 </dependency>

 <dependency>

 <groupId>ch.post.it.evoting.evotinglibraries</groupId>

 <artifactId>direct-trust</artifactId>

 <version>${e-voting-libraries.version}</version>

 <type>test-jar</type>

 </dependency>

 <dependency>

 <groupId>ch.post.it.evoting.evotinglibraries</groupId>

 <artifactId>domain</artifactId>

 <version>${e-voting-libraries.version}</version>

 <type>test-jar</type>

 </dependency>

[...]

In order to public to maven’s central repository, it is required to be able to control a DNS
record for the post.ch domain to setup the repository.

This means that a malicious actor able to configure DNS entries of the post.ch domain can
publish a malicious package with the name ch.post.it.evoting.evotinglibraries to
the Maven Central Repository.

Then, depending on the build server configuration, the malicious online package could be used
instead of the local legitimate one during the build process. In this case, the adversarial actor

P021121 | Evoting Web Application (1.3.1.1) 12

would be able to run backdoored code in the voting infrastructure and potentially
compromise the whole system.

This is purely theoretical as during this particular pentest, SCRT did not have the ability to
register the required DNS record or any knowledge of the build environment for the
production systems. This remark is therefore to be considered as a warning towards these
types of attacks.

CONTENT-SECURITY-POLICY WEAKNESS

The application defines a Content-Security-Policy, but it allows inline scripts to be executed
through the use of the unsafe-inline policy. This means that the application is not as well
protected against Cross-Site Scripting issues as it could be. The exact policy returned by the
server is the following:

Content-Security-Policy: default-src 'none'; script-src 'self' 'unsafe-inline' 'unsafe-eval';

style-src 'self' 'unsafe-inline'; img-src 'self' data:; connect-src 'self'; worker-src 'self';

frame-src 'none'; frame-ancestors 'none'; font-src 'self'; base-uri 'self'; form-action 'none'

Given the fact that no XSS issues were discovered during the audit, this is not reported as a
vulnerability, but as a remark and possible improvement.

P021121 | Evoting Web Application (1.3.1.1) 13

DETAILED RESULTS

VULNERABILITIES AND EXPLOITATION

P021121-01 USE OF OUTDATED SYSTEM OR SOFTWARE

SCRT CVSS

Impact ★☆☆☆ Base 3.7

Probability ☆☆☆☆ AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L

PREREQUISITES COMPROMISED ASSETS

» Specific conditions with vulnerable code » Denial of Service
» Remote Code Execution

AFFECTED SYSTEMS

ch.post.it.evoting.securedatamanager:backend ch.post.it.evoting.votingserver:voting-server

ch.post.it.evoting.securedatamanager:packagi
ng

ch.post.it.evoting.controlcomponent:control-
component

ch.post.it.evoting.architecture:architecture-
rules

ch.post.it.evoting.commandmessaging:comman
d-messaging

DESCRIPTION

An outdated system, or a system using outdated software is more likely to be prone to attacks
than a system with all updates and patches installed. A regular update is mandatory in order
to correct issues that could enable an attacker to compromise the normal behaviour of the
application.

EXPLOITATION

During the audit, automated checks revealed that some maven dependencies used to build
components of the project use outdated packages vulnerable to known CVEs. Although none
of these dependencies could be exploited during the tests, it is recommended to, wherever
possible, ensure that the latest version of each package is used in order to benefit from the
latest security patches:

» The securedatamanager and the architecture-rules use the package
com.squareup.retrofit2:converter-gson:2.9.0 which embeds the package
com.google.code.gson in version 2.8.5 which may be subject to DoS attacks due
to an insecure deserialization (CVE-2022-25647). It also relies on the
com.orientechnologies:orientdb-graph:3.2.19 which uses common-

collections:3.2.1 and commons-beanutils:1.7.0 both subject to CVEs
which help in exploiting deserialization issues.

P021121 | Evoting Web Application (1.3.1.1) 14

» The E-voting server uses spring-boot-starter which relies on snakeyaml:1.30.
This version of the package suffers multiple issues which could lead to DoS attacks or
remote code execution (CVE-2022-25857 (DOS), CVE-2022-1471 (RCE)).

POSSIBLE SOLUTIONS

It is recommended to regularly check whether the dependencies used in the project are
vulnerable or obsolete and, if so, to update them.

P021121 | Evoting Web Application (1.3.1.1) 15

COMPLEMENTS

LEGEND

SCRT SCORE

For each vulnerability discovered and detailed in this report, SCRT provides a threat
assessment based on two indicators, an Impact and a Probability of exploitation.

IMPACT
IMPACT OF THE VULNERABILITY IN CASE OF SUCCESSFUL EXPLOITATION
("HOW BAD?")

☆☆☆☆ ★☆☆☆ ★★☆☆ ★★★☆ ★★★★

N/A Weak Medium High Critical

PROBABILITY
PROBABILITY THAT THE VULNERABILITY WILL BE DISCOVERED AND
EXPLOITED BY AN ATTACKER?

☆☆☆☆ ★☆☆☆ ★★☆☆ ★★★☆ ★★★★

N/A Low Medium High Very high

However, it is important to keep in mind that this assessment is solely based on the
information available to the engineers at the time of the audit. The engineers are not
necessarily aware of all the details regarding the vulnerable applications or systems.
Consequently, these ratings should always be reconsidered based on the context of the
information system as a whole.

CVSS SCORE

In addition to its own scoring system, SCRT also provides an evaluation based on the Common
Vulnerability Scoring System (CVSS), for each vulnerability.

As a reminder, CVSS is a vulnerability scoring system designed to provide an open and
standardized method for rating IT vulnerabilities. CVSS helps organizations prioritize and
coordinate a joint response to security vulnerabilities by communicating the base, temporal
and environmental properties of a vulnerability. More information about the CVSS scoring
system can be found here: https://www.first.org/cvss/user-guide

https://www.first.org/cvss/user-guide

P021121 | Evoting Web Application (1.3.1.1) 16

RISK CALCULATION

Each risk presented in this report is calculated as the product of an impact and a probability
of exploitation, as defined in the matrix below.

Overall Risk Severity

Impact

CRITICAL High High Critical Critical

HIGH Moderate Moderate High Critical

MODERATE Low Moderate Moderate High

LOW Low Low Moderate High

 LOW MODERATE HIGH CRITICAL

 Probability

SCRT provides an estimation of the effort required to fix each vulnerability and thus mitigate
their associated risk. It should be noted that this assessment is based on SCRT’s experience,
and as such might not fully reflect the context of the company or organization.

CONTEXT

The context of each vulnerability is defined by its prerequisites and a list of compromised
assets. The prerequisites represent the conditions that are required for the exploitation of a
given vulnerability (e.g.: social engineering). Compromised assets represent the theoretical or
tangible result of its exploitation (e.g.: a user account).

ATTEMPTED ATTACKS

ATTACK SCOPE

The attacks performed by SCRT engineers during this audit cover the spectrum of attacks that
could be attempted by an actual attacker against the targeted information system. These
attacks thus cover "system" aspects (focused on machines and operating systems) as well as
"applicative" aspects (focused on applications running on top of the system).

As an example of this layered attack approach, consider a (poorly coded) web application
vulnerable to SQL injection, deployed on a correctly configured and patched web server. The
"system" components of this application (the OS, the web server, and the DB engine) do not
suffer from any known vulnerability. However, the "applicative" layer is flawed and thus
compromises the security of the whole system.

SEARCH FOR KNOWN VULNERABILITIES (VULNERABILITY SCANNING)

Software development is a complex task, especially when developing very large applications
such as operating systems, and often requires scores of developers in different teams working
autonomously. It is therefore not surprising that these applications contain many hidden bugs
and vulnerabilities (often due to development errors), even after they are put on the market.

P021121 | Evoting Web Application (1.3.1.1) 17

These flaws, when they are then discovered – by security researchers for example or by the
companies themselves – are often published to inform end users and push developers to
correct them. Many flaws are discovered and published daily, which are generally followed by
the release of a new patch for the affected piece of software.

However, these publications do not only interest the developers trying to correct the flaws.
They are also very interesting for hackers as they reveal vulnerable pieces of code in the
software. Sometimes these flaws allow hackers to gain remote access on a machine. In parallel
with the release of new patches, specialized websites often release exploit code for these
same vulnerabilities. These are small programs which exploit the vulnerability and are often
very easy to use. This makes it very important to apply patches as quickly as possible. Not
doing so leaves the door open to malicious hackers who may exploit the vulnerabilities to gain
access to the affected machine.

System administrators must therefore take extreme care in making sure that all systems are
up to date and that the accessible services are not prone to known vulnerabilities. This is a
constantly ongoing job as a seemingly secure machine one day may suddenly become the
target of attacks the next after the publication of a new vulnerability affecting it.

To check whether any of the systems within the scope are vulnerable to known vulnerabilities,
SCRT engineers will research information based on the reported versions of software
discovered previously.

This is partly done with the help of automated scanners whose main goal is precisely the
discovery of known vulnerabilities. However, a vulnerability scan is only a small part of a
security audit and – on its own – cannot substitute a manual audit.

NETWORK PROTOCOL ANALYSIS

Multiple services use cleartext protocols to communicate. This means that data is not
encrypted before being sent on the network, sometimes even while sending credentials. In
this context it is often possible for an attacker to sniff network traffic in hope of discovering
cleartext user names and passwords.

This is also true for many web applications that do not use HTTPS, or do not implement it in a
secure way, even when they deal with sensitive information.

The level of security applied to the communications of a given service is therefore an
important part of its security and must also be subjected to analysis.

WEAK AND DEFAULT PASSWORDS DISCOVERY

Many services used on a network are protected by a password. These can be remote access
services such as SSH, FTP or private sections of a website, such as an administration panel.

In most cases, access to these secure areas will allow an attacker to gain access to sensitive or
confidential information and in some cases compromise the machine entirely. For this reason,
it is important that the passwords be secure enough to stop an attacker from gaining illicit

P021121 | Evoting Web Application (1.3.1.1) 18

access. Indeed, however secure an application may be, if a user or administrator decides to
use a weak password that can easily be guessed by an attacker, the security level cannot be
guaranteed. It is extremely important that chosen passwords are not part of any dictionary,
as they are often used by attackers in an automated way to gain access to a service.

To check the security level of the passwords, SCRT engineers test default and weak passwords
on any service requiring authentication.

WEB APPLICATIONS

There are many different ways web applications may be attacked. New types of attacks are
regularly discovered allowing attackers to circumvent older security mechanisms, therefore
forcing developers to constantly improve their code to prevent these new attacks.

There is however a regularly updated repository of the most commonly discovered and
exploited vulnerabilities in web applications: the Open Web Application Security Project's
(OWASP) TOP 10.

However, vulnerabilities are not limited to what is published in the OWASP Top 10 and SCRT
engineers are more than capable of identifying flaws that are not necessarily well documented
thanks to their experience gained from years of penetration testing.

NETWORK SNIFFING

Within a local network, such as a corporate network, several different services are provided
for the users, such as file sharing, FTP servers, remote administration and so on. Many of these
services use cleartext protocols to communicate, meaning that data transiting on the network
is not encrypted. In some cases, even the user's credentials are sent in this way.

It is therefore possible for a user located on this network to intercept the network traffic in
order to gather credentials or confidential information. This is usually done with the help of
an ARP poisoning attack, which allows an attacker to make a targeted client believe it is the
default gateway and make the gateway believe it is the end client, which then leads to the
attacker proxying all requests between the two.

Cleartext credentials can easily be found this way, but in cases where authentication details
are encrypted, the use of "cracking" tools comes in handy and will allow an attacker to break
any potentially weak passwords.

EXPLOITING VULNERABILITIES

One of the main differences between an intrusion test and a simple vulnerability scan, which
is too often referred to in the same terms, is the fact that an intrusion test will truly simulate
what an attacker may do when attacking a company.

Any vulnerability discovered during the audit is exploited by SCRT engineers as long as it is
actually exploitable and in line with the rules of engagement determined during the kick-off.

P021121 | Evoting Web Application (1.3.1.1) 19

This is the only way to know how dangerous the vulnerability truly is. It will allow one to know
what kind of information an attacker may access by exploiting the flaw and whether they may
leverage it to attack other systems.

ADDITIONAL ATTACKS

The following attacks are usually not performed during penetration tests as they would go
beyond the scope of the targeted application or system. However, SCRT deems it important
to mention them here because they could be a key element in the exploitation of certain
vulnerabilities.

 MAN-IN-THE-MIDDLE

A Man-In-The-Middle attack refers to a situation where the attacker is able to eavesdrop and
alter the data transmitted between a client and a server, without any of them being able to
notice the manipulation. An adversary can undertake such an attack only if they have access
to specific locations on the network. Effective attacks can be launched from the local network
(for example ARP Spoofing or DNS Poisoning). Additionally, any node of the network through
which the client-server communication flows can be used to undertake a Man-In-The-Middle
attack. ISPs as well as governments are therefore often considered as having the possibility
(legitimately or not) to undertake these kinds of attacks.

 SOCIAL ENGINEERING

Users are frequently one of the attacker's primary targets. Sophisticated attacks (e.g.:
phishing, phoning) are often developed in order to manipulate victims. When stated as a
prerequisite for a vulnerability, social engineering means that an attacker must have some
kind of interaction with their victim in order to trick them into performing an action desired
by the attacker, such as clicking on a link or opening an e-mail attachment.

