
Code Review of Voting

Stimmunterlagen Offline

CLIENT Federal Chancellery

DATE June 23, 2023

VERSION 2.1

GIT COMMIT b0372fc

STATUS Final

CLASSIFICATION Public

AUTHORS Philippe Oechslin, Thomas

Hofer

DISTRIBUTION Federal Chancellery

MODIFICATIONS Added analysis of trusted build



Contents

1 Introduction 1

1.1 Context 1

1.2 Execution of the work 1

1.3 Executive summary 1

2 Analysis 2

3 Analysis of the code 4

3.1 Third party software 4

3.2 Analysis specific to the identified attacks 4

3.3 Generic analysis of the security of the code 5

3.4 Deployment 6

4 Recommendations 7

5 Conclusions 8

OS Objectif Sécurité SA

Route Cité-Ouest 19 - CH-1196 Gland

+41 22 364 85 70 - info@objectif-securite.ch



June 23, 2023 1 Public

1 Introduction

1.1 Context

This report contains our reviewof a specific softwareused in thee-voting solutionprovidedbyAbraxax to

the Canton of St-Gallen. The reviewwasmandated by the Federal Chancellery as part of the examination

process according to OEV Article 10 paragraph 1.

The reviewed software (Voting Stimmunterlagen Offline) is used after the content of the voting cards has

been created. It transforms the rawdata (names, codes, texts in XML format) to PDFfiles that can be sent

to the printing office. It is a third-party software, which is not developed by Swiss Post.

1.2 Execution of the work

The initial review was carried out in the weeks 4 and 5 of 2023. We were given the full set of source code

and the resources used to build the code, as well as the packaged version of the code that is delivered to

the cantons.

An update of this report followed the publication of the source code in Spring 2023, with several points

brought up in earlier versions having been resolved in themeantime.

1.3 Executive summary

The analysis of the results of the tests led us to the following conclusions:

No significant security issue: We found no evidence of code that would enable various attack scenarii

that we imagined for the specific threat model of the environment in which the software is executed.

Overall design and code quality issues: While not an immediate threat to security, some code quality

and architectural flaws complicate maintainability of the software andmight lead to issues in the fu-

ture.

Not all source code is published yet: Althoughmost of the code is published, the source code of some

specific libraries is not public yet.



June 23, 2023 2 Public

2 Analysis

The role of the software is to convert the voting cards fromxml format toPDF, for printing. The security of

the e-voting systems depends on the fact that the content of the voting card is not modified or revealed.

The software is installed on a secured standalone laptop, operated by at least two persons. Data is ex-

changed by USB keys.

A manual review of a sample of voting cards is already in place, to detect visible defects in the cards.

The software uses the following assets:

• Identity of voters: the voter register,

• Definition of the ballots: questions, answers, candidates,

• Codes: initialisation key, return codes, confirmation and finalisation code,

• Signature key: used for signing the produced PDF documents,

• Encryption key: used for protecting the document during their transfer to the printing office.

Malicious operation by the software could result in the following classes of attack:

Attack 1: Adding or removing cards:

This ismitigated by themanual verification of the number of cards and reclamations of voters

who do not receive a voting card.

Attack 2: Visible manipulation of voting cards to compromise individual verifiability: inverting the re-

turn codes for voting options, inverting the text of questions, exchanging the names of candi-

dates.

This is mitigated by themanual review of a sample of cards.

Attack 3: Leaking information to the printing service by hiding it in the PDF files:

This does not have an impact, as the printing service has access to all the data (identity of vot-

ers, codes, ballot, encryption key), except for the signing key. Since the printing office is in

charge of verifying the signature, being able to create fake signatures would not be an advan-

tage.

Attack 4: Leaking information to an attacker by having it printed on a voting card:

Themost efficient attack would be to leak the encryption key on a voting card, potentially hid-

ing it by some steganographic method. The attacker could obtain a copy of the encrypted

cards while they are transmitted from the canton to the printing office and then decrypt them

when the voting card is printed and delivered by mail.

A more straight-forward attack would be leak codes by adding them to a card.

Adding the codes of a single other card would allow the attacker to break the secrecy of the

vote cast with that card.

If the codes of a significant number of other cards can be added to one or few cards, this card

could be used change the outcome of the vote (break the vote correctness).

The only effectivemitigation against this class of attack is a reviewof the code. Publishing the

code would allow for a muchmore thorough review of the code.

It is important to note that for these attacks to succeed, the attacker may have to compromise some

elements of the untrusted part of the voting system. For example, to break vote secrecy, an attacker



Analysis

June 23, 2023 3 Public

who has obtained the codes of a victim and breaks into the voting server can compare the codes that are

returned to the victim with the leaked codes. While compromising the voting server could be difficult,

the trust model mandates that the system be safe, even if all untrusted parts have been compromised.

We have identified two types of attackers:

• Internal attackers: An attacker who injectsmalicious code into the software, before it is delivered to

the canton.

• External attackers: An attacker who injects code into the software through data that is given to the

code. The code could for example be added to the address field of a voter, before the voter registry is

imported.

Any malicious action by the operators or the software can be ignored in the analysis of the software be-

cause the operators already have the capability to manipulate the voting cards without the help of the

software. Additionally, the operators are subject to strong security rules (e.g. 4 eyes principle) as man-

dated in Number 3 of the OEV Annex.



June 23, 2023 4 Public

3 Analysis of the code

3.1 Third party software

The software makes use of following third party software:

• SDelete (signed by Microsoft), securely deletes files onWindows

• Razor library, uses templates to transforms JSON data to HTML

3.2 Analysis specific to the identified attacks

We searched for the code lines that operate on the encryption and signature keys in all application com-

ponents. The only components that use them are included in the dedicated CryptoTool package and ex-

ecutable. We did not find any uses of the keys beyond the expected decryption and signature features.

(part of Attack 4).

Weanalysed theway the code generates the voting cards. The input data is spread over several XMLfiles,

whicharefirst aggregated intoa singleJSONmodel. TheJSONmodel is thenprocessedandbrokendown

into individual votingcards inHTML format,which is then further transformed intoPDFfiles. TheHTML to

PDF transformation is very straight-forward anddoesnot performany changeondata. The input toJSON

transformation relies on parsers for the dedicated files, and we did not find any evidence of improper

mappingof data. TheJSON toHTML transformation is drivenby templates, relyingona third-party library

(RazorLight). The templates are not part of the code, butwewereprovidedwith sample templates. Those

templates we were given never mix data between voting cards (part of Attack 4).

The templates we were given do not contain any logic to invert mappings in conditional scenarii, and

therefore a randomizedmanual verification on known good datasetswould be sufficient to detect errors,

as long as the templates themselves have not been tampered with (Attacks 2 & 3).

We analysed how the PDF documents are zipped and encrypted. The application has a preview feature

for the generated PDFs. The files can then be downloaded, after having been encrypted. The code of the

application uses the same data for preview and as input to the encryption tool. This seems to guarantee

that the PDF files that are used for review are the same as the ones that are transmitted to the printing

office (Attacks 1 & 2).

We observed that the inputs of the software are XML files, which are handled by a standard XML parser,

relying on well-defined XSD schemas. While the application relies on external libraries for which we did

not get access to the source for the intermediary object representation of the data, the use of a standard

parser and a well-defined XSD schema should be sufficient in thwarting most injection risks. We further

confirmed that typical characters that could be used for injections (!"#$%&’()*+,-./:;<=>?@[\]^_`{|}~)

are properly processed. While this does not guarantee that effective code injection is impossible, it

makes it very improbable.

The process as a whole is streamlined by the client interface, which ensures continuity of the data han-

dling. The front-end passes the expected elements to the expected command-line utilities.



Analysis of the code

June 23, 2023 5 Public

3.3 Generic analysis of the security of the code

3.3.1 Security issues

Problem 1 - Outdated framework

The version of the .NET framework targeted for the build (netcoreapp2.0) is vulnerable and should be

upgraded.

Recommendation

It is the auditors understanding that amigration is in progress. In the shorter term, setting the target

version to netcoreapp2.2would already be an improvment since version 2.2, while out of support, has

no known critical vulnerabilities.

Update - May 2023 The framework has been updated to version net6.0.

Problem 2 - Frontend dependencies vulnerable

Most previously vulnerable dependencies have been updated to versions that do not include known

vulnerabilities. Only two dependencies with known vulnerabilities remain, and both of them are re-

quired for build only.

Dependency Version

minimatch pulled by electron-builder@23.6

webpack pulled by @angular-devkir/build-angular@ 14.2.10

Recommendation

Dependencies should be kept up to date and regularly scanned for known vulnerabilities (e.g using

dependency-check1).

3.3.2 Code quality review

Coding style and good practices are generally consistant within the backend code.

Several coding style and software quality issues have been vastly improved since a previous audit.

1
https://owasp.org/www-project-dependency-check/

https://owasp.org/www-project-dependency-check/


Analysis of the code

June 23, 2023 6 Public

3.4 Deployment

The code can be compiled in a reproducible way. Instructions are given for creating a docker in which

the application can be built with a controlled set of dependencies. The SHA-256 hashes of all artifacts,

before and after signature, are published with each release of the software.

Although the compilation is reproducible, the fact that the executables are signed – which is a good se-

curity practice – results in different hashes of executable files compiled at different times.

A trusted build ceremony is executed with the presence of a representative of the end-users of the soft-

ware. The hashes documented during the ceremony can be used by the end-users to verify that the soft-

ware they deploy is identical to the one that was compiled in the ceremony.

We noticed the following issues with the build ceremony:

Problem 3 - Build ceremony issues

• The executable code is signed using SHA-1 as digest function. Although there does not seem to

exist a practical attack in this case, SHA-1 is deprecated as digest algorithm for signatures.

• The build process makes use of pre-compiled packages (NugGets). The build ceremony does not

demonstrate that these packages were actually built from the published source code.

• The source code of some packages is not public yet.

Recommendation

A more modern hash function should be used for the signature, e.g. SHA-2 or SHA-3, all packages

should be built from source code during the build ceremony and the code of all packages should be

published.



June 23, 2023 7 Public

4 Recommendations

Based on our analysis and tests, we canmake the following recommendations:

Deployment:

• Compare the hashes of the software with the hashes obtained during the build ceremony.

• Have the changes in the code reviewed before each deployment. This includes the template files

whichmay be updated for each election.

Operations:

• Review a sample of voting cards before sending them to the printing office. Verify that the texts

and codes are identical to a known good source.

Weunderstand that the recommendations regardingdeploymentandoperationsarealready implemented.

Development:

• Publish the last parts of the source code that are not public yet.

• Adapt the build ceremony to include building of all packages.

• Require that the developers of the software use a secure coding standard that is similar to the

one required from the developers of the e-voting software at Swiss Post. While many issues have

been fixed since an earlier version of this report, coding style and code quality guidelines would

still be an improvement to the project.



June 23, 2023 8 Public

5 Conclusions

The source code that we reviewed seems to faithfully translate the received XML data into PDF files of

voting cards.

We identified 4 types of attacks that could be mounted in the specific setup in which the application is

used. Most of them can be easily excluded by reviewing the code. However, a manual review of a sample

of the voting cards is recommended as a complement.

Almost all source code is published, and it is built in a trusted build ceremony. While there are still some

issues to be fixed, the build ceremony will guarantee that the code is obtained from the original source

code and from a controlled set of dependencies.

Any changes in the code should be reviewed and the dependencies must regularly be checked, to verify

that they are authentic and up to date.

If these recommendations are applied, we see no explicit danger in using the software. We note how-

ever that the code could be simplified to make it easier to analyse and build independently. The general

security of the code should be increased by applying coding standards similar to the ones used by the

developers of the e-voting software.


	1 Introduction
	1.1 Context
	1.2 Execution of the work
	1.3 Executive summary

	2 Analysis
	3 Analysis of the code
	3.1 Third party software
	3.2 Analysis specific to the identified attacks
	3.3 Generic analysis of the security of the code
	3.3.1 Security issues
	3.3.2 Code quality review

	3.4 Deployment

	4 Recommendations
	5 Conclusions

