
Code review of the Data Integration

Service

CLIENT Federal Chancellery

DATE August 9, 2023

VERSION 3.0

GIT COMMIT 6437eef

STATUS Final

CLASSIFICATION Public

AUTHORS Philippe Oechslin, Thomas

Hofer

DISTRIBUTION Federal Chancellery

MODIFICATIONS Analysis version 2.7.1.5



Contents

1 Introduction 1

1.1 Context 1

1.2 Execution of the work 1

1.3 Executive summary 1

2 Analysis 2

3 Analysis of the Code 4

3.1 Analysis specific to the identified attacks 4

3.2 Generic analysis of the security of the code 4

3.3 Deployment 5

4 Recommendations 6

5 Conclusions 7

OS Objectif Sécurité SA

Route Cité-Ouest 19 - CH-1196 Gland

+41 22 364 85 70 - info@objectif-securite.ch



August 9, 2023 1 Public

1 Introduction

1.1 Context

This report contains our review of a specific software used in the e-voting solution provided by Swiss

Post. The reviewwasmandated by the Federal Chancellery as part of the examination process according

to OEV Article 10 paragraph 1.

The reviewed software (Data Information Service) is used to create the configuration file of an election

event based on the electoral roll and the definition the election.

This updated version of the report is based on version 2.7.1.5 of the software. The source code was pub-

lished on July 17th 13th 2023.

1.2 Execution of the work

Version 2.5 A first review was carried out in week 5 of 2023 on version 2.5 of the software. We were

given the full set of source code and the resources used to build the code, aswell as input files neces-

sary to run the application. We were able to compile and debug the code as well as run it to generate

an e-voting configuration.

Version 2.5.1 Starting with version 2.5.1, the code has been published in Gitlab1We updated the review

in week 20 of 2023, with version 2.6.0 of the software.

Version 2.7.1.5 This document reports the result for the review of version 2.7.1.5 of the software done

in week 30 of 2023.

1.3 Executive summary

The analysis of the results of the tests led us to the following conclusions:

No significant security issue: We found no evidence of code that would enable various attack scenarii

that we imagined for the specific threat model of the environment in which the software is executed.

No vulnerable dependencies: At the time of the review, there were no documented vulnerabilities for

the dependencies of the software.

Remaining code qualitiy issues fixed: The remaining code quality issues noted in version 2.6.0 have

been addressed.

1
https://gitlab.com/swisspost-evoting/e-voting/data-integration-service

https://gitlab.com/swisspost-evoting/e-voting/data-integration-service


August 9, 2023 2 Public

2 Analysis

The role of the software is to create a configuration file for an e-voting event. It processes the definition

of an election and of the electoral roll and produces a single XMLfile containing all information necessary

for setting up the the election event.

The software is installed on a secured standalone laptop, operated by at least two persons. Data is ex-

changed by USB keys. The laptop is used for configuring elections. It also contains the software (SDM)

which implements a part of the cryptographic protocol of the setup phase.

During the setup phase, the SDM reads the configuration file created by the DIS and produces results

which it signs with a key that is saved on the laptop.

The software uses the following assets:

• Identity of voters: the electoral roll,

• Definition of the ballots: questions, answers, candidates,

• Signature key: used for signing the produced xml documents.

The laptop also contains the following assets:

• SDM software: The SDM uses the output of the DIS and implements a part of the cryptographic pro-

tocol during the setup phase.

• Codes: initialisation key, return codes, confirmation and finalisation code, produced by the SDM.

Malicious operation by the software could result in the following classes of attack:

Attack 1: Adding or removing voters:

This is mitigated by the manual verification of the number of voters and the reclamations of

voter who do not receive a voting card.

Attack 2: Manipulating the rights of the voters: The software could manipulate the configuration of

the election to allow certain voters to participate to more – or fewer – parts of an election (e.g

cantonal or federal).

This is mitigated by the verification of the number of cast votes and the reclamations of voter

who did not not receive a voting card or are not able to participate to all expected parts of the

election.

Attack 3: Visible manipulation of voting cards to compromise individual verifiability: The software

could modify the phrasing of the questions or the names of candidates or parties to entice

the voter to vote against their will. It could evenmanipulate the codes if it waits until they have

been generated by other software on the laptop.

This is mitigated by themanual review of a sample of cards.

Attack 4: Manipulating the trusted component: The software couldmodify the behaviour of other soft-

ware that runs on the same laptop or interacts with their data. It could for example try to leak

secret information through the data that is exported from the laptop or signmanipulated data

with the keys that are available on the laptop.

This ismitigatedby having the source code reviewedand a trustedbuild ceremony thedemon-

strates that the deployed software is the software that was reviewed.



Analysis

August 9, 2023 3 Public

We have identified two types of attackers:

• Internal attackers: An attacker who injectsmalicious code into the software, before it is delivered to

the canton.

• External attackers: An attacker who injects code into the software through data that is given to the

code. The code could for example be added to the address field of a voter, before the voter registry is

imported.

Any malicious action by the operators or the software can be ignored in the analysis of the software be-

cause the operators already have the capability to manipulate the voting cards without the help of the

software. Additionally, the operators are subject to strong security rules (e.g. 4 eyes principle) as man-

dated in Number 3 of the OEV Annex.



August 9, 2023 4 Public

3 Analysis of the Code

3.1 Analysis specific to the identified attacks

The code creates the output file based on the inputs it reads. We did not find any code does not follow

this principle and that would manipulate the resulting output file. This seems to exclude manipulations

of the content of the cards or of the voting rights of the voters. (Attack 2 and 3)

We did not find any code that would read or modify other files on the laptop, other than the files needed

for its operation. This seems to exclude any attack on the cryptographic protocol. (Attack 4).

We observed that the inputs of the software are XML files, which are handled by a standard XML parser,

relyingonwell-definedXSDschemas. Theuseofastandardparser andawell-definedXSDschemashould

be sufficient in thwarting most injection risks.

Wenoted that there is a specific test for theproperescapingof somecharacterswhich isexecutedduring

compilation. We further confirmed that typical characters that could be used for injections

(!"#$%&’()*+,-./:;<=>?@[\]^_`{|}~) are properly processed. While this does not guarantee that effective

code injection is impossible, it makes it very improbable.

3.2 Generic analysis of the security of the code

The dependencies are up-to-date.

Problem 1 - High cognitive complexity

While most of the code is structured in code units of reasonable sizes, some methods have a (very)

high cognitive complexity. This complicates maintenance and review of the code. One such example

is the buildmethod of the AuthorizationService class, where the complexity is rated at 70.

Recommendation

Suchcomplexitiesmake it very hard to analyse thosemethods as awhole and require additional effort

from maintainers and reviewers alike, thus increasing the risk of errors in logical flows and making

such errors harder to spot. The code should be refactored to reduce the complexity.

Verification

This has been addressed in the newer versions of the code.

Problem 2 - Generics usage

TheStax2Wrapperclass raisesseveralwarnings related togenericsusage, andcouldbenefit fromstronger

typeguarantees. Using twoseparateHashMaps to keep trackof classes andconsumers related to the

same tag names seems like a misstep in encapsulation. So does keeping the type of the iterator and

the value of the current node in the parent class rather than in the nested dedicated class.



Analysis of the Code

August 9, 2023 5 Public

Recommendation

Unchecked type conversions can lead to issues that tend to be very difficult to identify, try to avoid

them altogether.

Verification

The implementation has been improved and uses a clean approach to generics.

Problem 3 - Null value returned for a collection

In the Ech015vx4Mapper class, a null value is returnedwhere a collection is expected. Onewould expect

an empty collection to be returned instead.

Verification

Empty collections are now returned instead of null values.

Problem 4 - Inconsistent Java language level

While most of the code style is consistent, some places indicate a migration from an earlier version

of Java that has not been fully completed. For instance, several places include the older Stream.col-

lect(Collectors.toList()) syntax, rather than the now recommended Stream.toList().

Recommendation

While not necessarily an issue of itself, this indicates that the effort invested in the code is not con-

sistent with other elements of the internet voting system.

Verification

Those elements have now beenmigrated to the newer syntax.

3.3 Deployment

A build ceremony is carried out to compile the code in an observable way. At the end of the ceremony a

protocol containing the hashes of the application is signed by all participants. The DIS is compiled in the

same ceremony as the voting client, portal and server are compiled. The protocols are published on the

Git of Swiss Post.

When the cantons obtain the software, they can verify the hashes against the values on the protocol to

make sure that they have the authentic software.



August 9, 2023 6 Public

4 Recommendations

Based on our analysis and tests, we canmake the following recommendations:

Deployment:

• Compare the hashes of the software with the hashes obtained during the build ceremony.

• Have the changes in the code reviewed before each deployment.

We understand that the recommendations regarding deployment are already implemented.

The code is now published in the same repository as the e-voting software. It is also built and deployed in

the same trusted build ceremony. We suggest including the code of the DIS into the scope of the general

audit of the e-voting system.



August 9, 2023 7 Public

5 Conclusions

The source code that we reviewed seems to faithfully create the configuration file from its inputs. The

trusted build ceremony guarantees that the software is made from the analysed source code.

We identified 4 types of attacks that could be mounted in the specific setup in which the application is

used. They can be easily excluded by reviewing the code. We thus do not see any explicit danger in using

the software.

Since the code is now published and deployed in the same way as the rest of the e-voting software, we

suggest including it into the general audit of the e-voting system.


	1 Introduction
	1.1 Context
	1.2 Execution of the work
	1.3 Executive summary

	2 Analysis
	3 Analysis of the Code
	3.1 Analysis specific to the identified attacks
	3.2 Generic analysis of the security of the code
	3.3 Deployment

	4 Recommendations
	5 Conclusions

