
Security audit of the e-voting back-end

CLIENT Swiss Federal Chancellery

DATE August 9, 2023

VERSION 2.0

GIT COMMIT 1e9af1b

STATUS Final

CLASSIFICATION Public

AUTHOR Philippe Oechslin

DISTRIBUTION Swiss Federal Chancellery

MODIFICATIONS Added appendix for version

1.3.2.1

Contents

1 Introduction 1

1.1 Context 1

1.2 Execution of the work 1

1.3 Executive summary 2

2 Channel Security Signatures 3

2.1 Configuration Phase: 3

2.2 Voting Phase: 3

2.3 Tally Phase: 4

3 Creating error situations 5

3.1 Cast of a vote with an invalid pCC 5

3.2 Modifying a signed parameter 5

3.3 Modifying a signed parameter to create an inconsistency 6

4 Voting client signatures and Authenticated Data 7

4.1 Certificates and signatures 7

4.2 Authenticated data 8

5 Technical security tests 9

5.1 Analysis of Open Ports 9

5.2 Analysis of exposed REST endpoints 9

5.3 Scanning for vulnerabilities 10

6 Documentation of the Architecture 11

7 Conclusions 12

A Additionnal tests of version 1.3.2.1 13

A.1 New authentication mechanisms and incorrect local time 13

A.2 Tally of invalid ballots 13

A.3 Modifying signed parameters 14

OS Objectif Sécurité SA

Route Cité-Ouest 19 - CH-1196 Gland

+41 22 364 85 70 - info@objectif-securite.ch

August 9, 2023 1 Public

1 Introduction

1.1 Context

The goal of this audit was to examine the security of the server-side parts of the e-voting systems based

on the publicly available end-to-end test system.

Swiss post publishes the end-to-end test system as a set of docker containers and configuration data1.

This makes it possible to run a complete election event on a local machine.

Obviously, a local end-to-end system does not have all the security controls that exist in the real produc-

tion environment. But since it uses the same code, it allows testing security aspects that do not depend

on the production environment.

1.2 Execution of the work

Version 0.15.2.1: Theversionof theend-to-endsystemthatwasused for thisanalysiswasversion0.15.2.1,

which was publishedmid of July 2022.

The tests were carried out in August and September on our premises, with the system installed on a

Linux server, except for the three instancesof theSecureDataManager,whichwere runonaWindows

machine.

We based our analysis on the following documentation (found on Swiss Post’s public repository):

• Swiss Post Voting System, System Specification, v1.0.0

• Cryptographic Primitives of the Swiss Post Voting System, v1.0.0

• E-Voting Architecture Document, v.1.1.0

Version 1.3.2.1 Some aspects of the end-to-end systemwe tested in July 2023. given in appendix A.

We also adapted our analysis of the documentation to the new versions of the documentation.

• Swiss Post Voting System, System Specification, v1.3.1

• Cryptographic Primitives of the Swiss Post Voting System, v1.3.0

• E-Voting Architecture Document, v.1.3.0

• Infrastructure whitepaper of the Swiss Post evoting system, 2023-04-19

1
https://gitlab.com/swisspost-evoting/e-voting/evoting-e2e-dev

https://gitlab.com/swisspost-evoting/e-voting/evoting-e2e-dev

Introduction

August 9, 2023 2 Public

1.3 Executive summary

The analysis of the results of the tests led us to the following conclusions:

Themessages are effectively protected by signatures: We were able to verify that all messages that

are required to be signed according to the specification are indeed signed in the implementation. In

two instances we verified that themodification of a message was correctly detected.

Voters can verify that they use the correct software with the correct data: The voters can use a pub-

lished hash to verify that they are using the correct software. This software verifies all parameters,

including the public key used for encryption. The verification is done with a hash of all parameters

that is stored in the authenticated data of the voter’s keystore. Thus, when voter types in the Start

Voting Key that is printed on theirmaterial, that key is used both to decrypt secret thatwill allow them

to vote and to verify that the correct parameters will be used to vote.

Signature of parameters does not include keys: In version0.15.2.1 therewasan issuewith fact that the

encryption key was not part of the signed parameters. This had no impact, since the client software

verifies the key, and the voters can verify that they have the correct client software (see above).

The signature of parameters has been completely removed in version 1.3.2.1.

No technical flaws detected: We discovered no vulnerabilities in the back-end systems that would al-

low an attacker to manipulate the systems.

Some inaccuracies found in the Architectural document: Thedocumentdoesnot alwaysdescribe the

interconnections between the back-end systems exactly as they are. The detailed technical informa-

tion about the interconnections can however be found in the Infrastructure whitepaper.

August 9, 2023 3 Public

2 Channel Security Signatures

The computational proofs rely onmessages’ authenticity which is not given in the communication chan-

nels. To achieve this property, the cryptographic protocol adds signatures to most messages. These

signatures are detailed in section 7 of the System Specification.

We set up the system in a way that we could eavesdrop on all communications and verified the presence

of the signatures listed in the specification. The signatures are given in tables 16, 17 and 18 of the System

Specification.

2.1 Configuration Phase:

Figure 2.1 Table 15 of the document: messages of the configuration phase

We numbered themessages from 1 to 9. We found themessage 1-7 with their respective signature. Mes-

sage 8 is sent to the verifier, whichwe did not test. Message 9was absent due to the fact that the version

of software in the end-to-end test system did not yet implement electoral board hashes.

We verified that the CMtable is correctly ordered alphabetically according to the base64 value of its first

column.

2.2 Voting Phase:

We observed all messages with their respective signatures.

Channel Security Signatures

August 9, 2023 4 Public

Figure 2.2 Table 16 of the document: messages of the voting phase

2.3 Tally Phase:

Figure 2.3 Table 17 of the document: messages of the tally phase

We observed the signatures of the two firstmessages. Again, the last twowere not seen as they are sent

to the verifier, which we did not test.

August 9, 2023 5 Public

3 Creating error situations

We created three error scenarios to verify the correct reaction of the system.

3.1 Cast of a vote with an invalid pCC

One of the new features added to the protocol is an allow-list that is used by the control components to

let them verify whether an input they receive for the calculation of a return code, is among all possible

valid inputs. This makes sure that the control components will not participate on calculations with ma-

nipulated parameters.

We used our own voting client to submit a vote with an invalid partial choice code. As a result, we got

no answer from the voting server. We also got no answer from the server when we subsequently tried to

submit a correct vote with the same voting card.

The behaviour of the system is correct in the sense that a vote with invalid pCCs will be detected when

the control components run the CreateLCCShare algorithm, during the calculation of the return code.

Subsequent submissions of a vote are blocked because the voting card has been recorded in the list

𝐋decPCC of the card for which a pCC has already been decrypted.

We checked the logs of the e2e system to whether the absence of an answer was a correctly intercepted

error or due to a crash of the program.

The error is correctly caught, as shown in the logs:

$ docker logs control-component-1 | less -R

Caused by: java.lang.IllegalStateException: Failed to obtain response payload

at ch.post.it.evoting.controlcomponents.ExactlyOnceCommandExecutor.process(ExactlyOnceCommandExecutor.java:84)

~[classes!/:0.15.2.1]

[...]

... 13 more

Caused by: java.lang.IllegalStateException: The partial Choice Return Codes allow list does not contain the partial

Choice Return Code.

at ch.post.it.evoting.controlcomponents.voting.sendvote.CreateLCCShareAlgortihm.createLCCShare

(CreateLCCShareAlgortihm.java:152) ~[classes!/:0.15.2.1]

[...]

3.2 Modifying a signed parameter

When calculating the finalisation code, the control components exchange their partial results and check

that the combination of the results is in an allow-list. Only then do they reveal to the voting server the

information needed to calculate the finalisation code.

In this experiment, we intercepted the traffic between the voting server and a control component. We

modified the message containing the confirmation key 𝐶𝐾𝑖𝑑, which is used as input for the CreateLVCC-
Share algorithm. Note that this message is signed by the voting server.

Creating error situations

August 9, 2023 6 Public

Themodification is detected and no finalisation code is generated. There is a timeout. The control com-

ponent that received themanipulated value has the following log entry:

InvalidPayloadSignatureException: Signature of payload VotingServerConfirmPayload is invalid.

The signature of Long Vote Cast Return Codes Share hash response payload is invalid

After tallying, we can confirm that the vote is not part of the votes that have been tallied.

3.3 Modifying a signed parameter to create an inconsistency

In this experiment we targeted the input to the next algorithm, VerifyLVCCHash. Wemodified one of the

hash shares that are exchanged between the control components (hlVCCid) for validation. Note that this
message is signed by the control component that sends it.

The control component that receives the modified hash, will not register the vote as confirmed in the

ballot box, whereas the three other components will register it as confirmed. This leeds to the following

situation:

Themodification is detected and nofinalisation code is generated. The control component that received

themanipulated hash has the following log entry:

Signature of payload SetupComponentLVCCAllowListPayload is invalid

During the tally phase, the second control component generates the following log entry:

The initial ciphertexts vector and verifiable shuffles ciphertexts vector must have the same size.

Tallying stops.

Note that is manipulation could be done once for each control component, but on different votes. They

would thus all have the same number of votes, although they would bemissing a different one. This situ-

ation would not be detected by the consistency check that compares the number of initial votes with the

number of shuffled votes.

It would however be detected when the control components verify the mixing proofs of the first mixing

step (VerifyMixDecOnline algorithm in the system specification). Since the proofs of the firstmixing step

are checked against the locally stored initial list of votes (𝐜init,j), the checkwould fail if the control compo-

nent running the check does not have the same list of votes as the first control component.

August 9, 2023 7 Public

4 Voting client signatures and Authenticated

Data

4.1 Certificates and signatures

When the voter accesses the home page of the voting server, a few javascript files included in the page.

One of them contains the code of the voting client, that will execute the cryptographic protocol for the

voter. Another file is a root certificate that is used to sign some elements that are downloaded later.

For both elements the server includes an integrity tag which lets the browser automatically check the

integrity of the javascript files. Moreover, this these tags are also published on a cantonal website, to

allow voter to check for themselves if the downloaded files are the intended files.

Figure 4.1 shows the relation between the elements that are downloaded in the homepage and the two

successive requests to the server. The elements pointed by an arrow are signed by the element from

which the arrow emerges.

 Home page

Request token response

Authenticate token response

platformRootCA

electionRootCA

servicesCAauthoritiesCA credentialsCA

platformRootCA

tenantCA

authenticationTokenSignerCertadminBoard

ballot and pTable (fr) text(de) text (it) text (rm) text

Figure 4.1 Certificates downloaded in the first three requests, and their relation

Voting client signatures and Authenticated Data

August 9, 2023 8 Public

The goal of providing a root CA with an integrity tag is to give the voter the tools needed to convince

themselves that the texts of the questions and their mapping to numbers are the intended one (as listed

in the pTable). As we see in figure 4.1 the platform Root CA provided in the home page does not actually

sign these elements, but rather an intermediate certificate (tenantCA) that signs yet another intermedi-

ate (adminBoard) that finally signs the elements Thus, even if the voter has certainty to have the correct

platform root CA, they still must trust in whoever signed the intermediate certificates.

If the certificate provided with an integrity tag in the home page had been the adminBoard certificate,

then the voters would need to trust nothing else to verify the texts and the pTable.

Moreover, basic cryptographic elements like the definition of the group (𝑝 and 𝑞) and the public key used
to encrypt the votes are not signed.

Fortunately, anotherwayhasbeen introduced toconvince thevoters thatall theparameters they received

are authentic, as we will see in the next section.

The imperfections of the signing scheme have thus no impact.

In version 1.3.2.1 of the software, there are nomore certificates or signatures.

4.2 Authenticated data

An alternative way of verifying the parameters received is given by the way the voter’s keystore is en-

crypted. The keystore contains the private key that the voter needs to carry out the cryptographic pro-

tocol. The keystore is encrypted with a key derived from the Start Voting Key (SVK) that is printed on the

voting material. The voter can thus only vote if they type in the correct SVK.

Additionnaly to the private key, the keystore also carries a hash of all cryptographic parameters and of

the definition of the ballot. The voting client verifies that the hash matches a hash calculated with the

parameters that were actually received by the client. The list of parameters that are fed into the hash are

given in the GetKey algorithm of the protocol specification as seen below:

Figure 4.2 List of parameters that are included in the hash which is verified when de-

crypting the private key of the voter (GetKey algorithm in the System Specification)

If thehashesdonotmatch, the voting client refuses to vote. Weverified this behaviour in the sourcecode

of the client and during our online test.

If the voter thus verifies the integrity of the voting client downloaded from the home page, they will have

certainty that the voting client will only proceed if none of the parameters received by the server have

been tampered. Themore inclined votersmight even be able to calculate the hash of the parameters and

verify it themselves.

This authenticated hash has only been introduced in the latest versions of the protocol (1.0.0). In our

opinion, this way of verifying that the parameters are authentic is superior to what is achieved by the

signature scheme described in the previous section. This satisfies section 2.7.3 of the OEV that requires

that voters must be able to verify that they received the correct code of the client and parameters.

August 9, 2023 9 Public

5 Technical security tests

5.1 Analysis of Open Ports

All Java applications, voting server with its microservices as well as the control components, have an

open port for debugging. The port gives access to the Java Debug Wire Protocol (JDWP). This protocol

can be abused to execute arbitrary command on themachine.

Thedebuggingport is activated fromthecommand linewhenstarting theapplicationwith theparameter:

-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=*:<port>

This parameter is set in the common configuration file of all docker containers of the end-to-end test

system, docker-compose.common.yml.

We assume that this parameter is not set in production environments.

Other than JDWP, which is valid in a test environment, we did not discover any unnecessary open ports.

5.2 Analysis of exposed REST endpoints

The different components of the back-end each offer a set of REST endpoints that are used to interact

with them. For example, the extened authenticationmicroservice on the voting server has an endpoint

called

ea-ws-rest/extendedauthentication/tenant/{tenantId}/electionevent/{electionevent}/blocked

that can be used to get a list of cards that have been blocked because of too many failed authentication

attempts.

The applications are written in Java. On startup all, endpoints and their corresponding Java method are

listed in the logs of the application.

We analysed the lists of endpoints available for every service of the back-end to check if there was a

service that would give access to protected information or functionality, maybe for debugging purposes.

We did not identify any end-point that did not seem to be legitimate.

Note that the control components do not expose any service, they connect to a message broker, with

which they can then exchangemessages.

Technical security tests

August 9, 2023 10 Public

5.3 Scanning for vulnerabilities

The docker containers only contain the minimal set of programs needed for e-voting. We scanned the

containers with a vulnerability scanner and also checked the version of some of the software manually.

All software seems to be up-to-date with no known vulnerabilities.

August 9, 2023 11 Public

6 Documentation of the Architecture

Finally, we studied the E-Voting Architecture Document and checked if it mached the architecture found

in the end-to-end testing system.

We found several differences with the document. Some of them may be due to the fact that the test

system is not identical to the production environment.

TheE-VotingArchitectureDocumentmakesabstractionof intermediate systems like reverseproxiesand

the load balancer. The information about these elements can be found in the Infrastructure whitepaper.

This could bementioned in the introduction of the architecture document.

August 9, 2023 12 Public

7 Conclusions

We checked the back-end systems (Voting Server, Control Components and accessory services) for vul-

nerabilities or misconfigurations that would enable any attack on the cryptographic protocol.

Our tests did not reveal any weakness in the implementation of the back-end systems.

The fact that it is possible to download and run all elements necessary to cast a vote is a great way to

see the code working and to interact with it. It allows carrying out tests without needing access to test

systems of Swiss Post.

August 9, 2023 13 Public

A Additionnal tests of version 1.3.2.1

In week 30 of 2023 we have reviewed some aspects of version 1.3.2.1 of the publicly available end-to-end

test system. We verified the following items:

A.1 New authentication mechanisms and incorrect local time

The new authentication mechanism implemented since version 1.3 makes use of a time-based one time

password (TOTP). The authentication is based on the system time and has a validity of one minute. This

implies that voterswith a local clock that is off bymore than oneminutewould not be able to vote. To pre-

vent this situation, the server adds its current system time in error messages related to authentication.

This allows the client to display a specific error message if it finds out that the system time of the client

is different than the one of the server.

Note that system time is always given in universal time, thus being in a different time-zone would still

make it possible to authenticate.

We advanced the local clock of the client by 5 minutes. When sending the correct start voting key and

birthday, the voting client displays an error message which states that the client’s clock is wrong and

recommends setting the clock to the correct time or using a different device.

A.2 Tally of invalid ballots

The cryptographic protocol prevents the submissions of almost all types of invalid votes. Without know-

ing what the content of a ballot is, the system makes sure that for each question there is the correct

number of answers (e.g. yes, no or candidate names), that these answers belong to the list of possible

answers and that no answer appears more than once.

Still, there is one specific typeof invalid ballot that canbe submitted. In a proportional election, a listwith

a party namemust contain at least one candidate. This special case is not detected by the protocol and

is accepted into the ballot box.

Note that the voting client does not allow to cast this type of invalid ballot. The voter has to wilfully ma-

nipulate the client – or use a different client – to submit such a ballot. The server correctly returns the

verification codes for the party list and blank candidates.

August 9, 2023 14 Public

We submitted an invalid ballot with our own voting client and ran the tally. The eCH-0110 output file cor-

rectly lists an unaccounted, invalid ballot:

<eCH-0110:countOfReceivedBallotsTotal>

<eCH-0110:total>1</eCH-0110:total>

</eCH-0110:countOfReceivedBallotsTotal>

<eCH-0110:countOfAccountedBallots>

<eCH-0110:total>0</eCH-0110:total>

</eCH-0110:countOfAccountedBallots>

<eCH-0110:countOfUnaccountedBallots>

<eCH-0110:total>1</eCH-0110:total>

</eCH-0110:countOfUnaccountedBallots>

<eCH-0110:countOfUnaccountedBlankBallots>

<eCH-0110:total>0</eCH-0110:total>

</eCH-0110:countOfUnaccountedBlankBallots>

<eCH-0110:countOfUnaccountedInvalidBallots>

<eCH-0110:total>1</eCH-0110:total>

</eCH-0110:countOfUnaccountedInvalidBallots>

A.3 Modifying signed parameters

Weintercepted the trafficbetween thecontrol componentsand tried tomodify thedata in twooccasions:

CreateLCC: This is the algorithm were the control components collaborate to create the long return

code (LCC) by creating each a share of it. We intercepted andmodified a CreateLCCShare request to

one control component.

Whenwe replacedoneof the exponentiatedGammasby0wegot ageneric error, as0 is noa valid element

of the group Gq: /

java.lang.IllegalArgumentException:

Cannot create a GroupElement with value 0 as it is not an element of

group Group Gq

We then replaced the value by 3, which is element of the group. The control component accepted the

message but detected themanipulation when verifying the signature:

ch.post.it.evoting.domain.InvalidPayloadSignatureException:

Signature of payload ControlComponentPartialDecryptPayload is invalid.

[..]

at ch.post.it.evoting.controlcomponent.voting.sendvote.LCCShareProcessor.verifySignature(LCCShareProcessor.java:191)

MixOnline: In the alogrithm, the control components mix and partially decrypt the ballots. Each com-

ponent generates a proof that the partial decryptionwas done correctly. The next control component

must verify the proof of the previous component before proceeding with decryption.

Wemodified the value of the decryption proof and obtained the following error message:

ch.post.it.evoting.domain.InvalidPayloadSignatureException:

Signature of payload ControlComponentShufflePayload is invalid

We removed the signature of the message, to check if the control component would then by-pass

signature checking:

Cannot construct instance of `ch.post.it.evoting.cryptoprimitives.domain.signature.CryptoPrimitivesSignature`,

problem: `java.lang.NullPointerException`

	1 Introduction
	1.1 Context
	1.2 Execution of the work
	1.3 Executive summary

	2 Channel Security Signatures
	2.1 Configuration Phase:
	2.2 Voting Phase:
	2.3 Tally Phase:

	3 Creating error situations
	3.1 Cast of a vote with an invalid pCC
	3.2 Modifying a signed parameter
	3.3 Modifying a signed parameter to create an inconsistency

	4 Voting client signatures and Authenticated Data
	4.1 Certificates and signatures
	4.2 Authenticated data

	5 Technical security tests
	5.1 Analysis of Open Ports
	5.2 Analysis of exposed REST endpoints
	5.3 Scanning for vulnerabilities

	6 Documentation of the Architecture
	7 Conclusions
	A Additionnal tests of version 1.3.2.1
	A.1 New authentication mechanisms and incorrect local time
	A.2 Tally of invalid ballots
	A.3 Modifying signed parameters

