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Management Summary

In cooperation with the Chancellery, I re-evaluated the Swiss Post e-voting system cov-
ering changes made in versions 1.2.3 and 1.3.0. In total, I identified 12 issues between
the two versions (14 issues, of which 2 have been resolved since the initial draft).

As in previous reports, many of these findings pertain to minor issues surrounding
ambiguities or typos in the specification. However, we make the following three high-level
recommendations.

1. Improving written communication regarding design intent. As an ongoing
issue, we continue to encourage Swiss Post to explain their reasoning for their changes
in writing with particular attention to why (in their view) a given change is necessary
and sufficient.

2. Improving cryptographic parameter generation. As an ongoing issue, we con-
tinue to recommend Swiss Post discontinue the use of the Baillie-PSW primality test.
To that end, we include a detailed proposal for a safe prime generation algorithm in
Section 5.3 that addresses Post’s performance needs while simultaneously providing
the security properties outlined in the recommendations of previous reports.

3. Expanding the discussion on voter authentication. We articulate concerns
about the suitability of voter dates of birth as an authentication credential and
recommend a broader-ranging conversation and analysis of the real-world security
requirements of voter credentials.

Version History

August 1st, 2023 Final draft. Issue 6 (Signature Algorithm Specification) and
Issue 7 (Signatures on Messages) marked as resolved based on
Swiss Post’s response to our initial draft.

July 2nd, 2023 Initial draft submitted to Chancellery.
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1 Description

This document is part of a rolling re-examination of the Swiss Post e-voting system. In
this report, we examine system updates made in version 1.2.3 (March 2023), which we
discuss starting in Section 1.4, and version 1.3.0 (May 2023), which we discuss starting
in Section 3. Finally, as a significant component of this report, we conduct a detailed
analysis of Swiss Post’s safe prime generation algorithm beginning in Section 5.3 and
propose a concrete solution to meet the most important design goals simultaneously.

Between these two versions, I initially identified 14 issues, which are catalogued in
the following sections. Of these, 2 issues have been marked as resolved since the initial
draft (Issues 6 and 7) on account of Swiss Post’s clarifications. The following subsections,
however, detail the more important high-level findings.

1.1 Improving Written Communication Regarding Design Intent

In several instances in the recent versions, the reasoning and intent behind a particular
change were not explained in the document, although it became apparent after a direct
conversation with the Swiss Post team.

A concrete example is given in Issue 2 in Section 2. After repeated recommendations
in my previous reports to use the Miller-Rabin test instead of the Baillie-PSW test,
Swiss Post updated the system—to use both. From a cryptographic and software design
perspective, this choice did not initially appear to make sense, although a telephone
conversation with the Swiss Post designers clarified their intent.

As such, I would continue to encourage Swiss Post not only to improve their system
incrementally but also to explain the reasoning for their changes in writing. Particular
attention should be given to why (in their view) a given change is necessary and sufficient.

1.2 Improving Cryptographic Parameter Generation

We continue to recommend Swiss Post discontinue the use of the Baillie-PSW primality
test due to several security and design factors covered in Section 1.4 (and extensively in
our previous reports to the Chancellery). Speaking with Swiss Post, we understand that
performance is a key issue for them.

To that end, we propose a safe prime generation algorithm all meeting our (com-
bined) design goals simultaneously: formal, deterministic guarantees; faster run time
(29% faster than Swiss Post’s current approach); and a simpler, self-contained design
with no reliance on external primality testing software libraries. Our approach is based
on efficient deterministic primality generation based on Pocklington’s theorem, similar
to FIPS 186-5 [1] (see Appendix B.10) except adapted to the safe prime setting, with
an additional safe prime-focused optimization due to a recent observation by Ramzy [9].
A detailed proposal including algorithms, analysis, proofs, code and testing is presented
starting in Section 5.3.

1.3 Expanding Discussion on Voter Authentication

We articulate concerns about the suitability of voter dates of birth as an authentication
credential and recommend a broader-ranging conversation and analysis of the real-world
security requirements of voter credentials.



1.4 Documents Examined

Below is a list of the versions of my reports submitted to the Chancellery, the version
of the primitives specification examined in my report, and the date that version was
published by Swiss Post.

Primitives Specification

Description: Pseudocode specifications of cryptographic functions used by the
Swiss Post system. Referred to throughout this document as the primitives specifi-
cation.

Report Version Examined Date Published

2021 Preliminary Report 0.9.5 2021-06-22

2021 Final Report 0.9.8 2021-10-15

2022 Re-Examination 1.0.0 2022-06-24

2022 Re-Examination (Addendum I) 1.0.0 2022-06-24

2023 Addendum II 1.2.0 2022-12-09

2023 Rolling Re-examination 1.2.1 2023-06-30
(this document)

2023 Rolling Re-examination 1.3.0 2023-06-30
(this document)

Available: https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-
primitives/-/blob/master/Crypto-Primitives-Specification.pdf

System Specification

Description: Document describing the steps, phases and procedures of setting up,
executing and verifying an election using the Swiss Post system. Referred to in this
document as the system specification.

Report Version Examined Date Published
2021 Preliminary Report 0.9.6 2021-06-25
2021 Final Report 0.9.7 2021-10-15
2022 Re-Examination 1.0.0 2022-06-24
2023 Rolling Re-examination 1.3.0 2023-06-30
(this document)

Available: nttps://gitlab.com/swisspost-evoting/documentation/-/blob/master/

System/System_Specification.pdf



https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/master/Crypto-Primitives-Specification.pdf
https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/master/Crypto-Primitives-Specification.pdf
https://gitlab.com/swisspost-evoting/documentation/-/blob/master/System/System_Specification.pdf
https://gitlab.com/swisspost-evoting/documentation/-/blob/master/System/System_Specification.pdf

Re-Examination of System Version 1.2.3

In Sections 1.4 to 3, we discuss relevant findings in changes made to Swiss Post’s e-Voting
system as of version 1.2.3. Specifically, we examine the changes made to the cryptographic
primitives specification document as of version 1.2.1.! We focus on primarily on the
relevant changes highlighted in Swiss Post’s CHANGELOG.?

Swiss Post continues to refine its system in a positive and constructive direction.
There are some concerns over some algorithmic changes, which would benefit from addi-
tional (written) explanations regarding the particular security goals/requirements. With-
out articulated security requirements or goals for generating verifiable parameters, as-
sessing the necessity and sufficiency of a specific algorithmic change is difficult.

As a high-level recommendation, the approach to cryptographic design ought to be
one of parsimony; necessary things must be included. Unnecessary things ought to be
excluded. This lowers the threat surface and limits confounding factors in the analysis.

! Swiss Post Cryptographic Primitives specification version 1.2.1. Available: https:
//gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/
745ee18£d65684b685c7adc040efc55220£667b3/Crypto-Primitives-Specification.pdf

2 Swiss Post Cryptographic Primitives Changelog for version 1.2.1. Available: https:
//gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/
745ee18fd65684b685c7adc040efc55220£667b3/CHANGELOG . md


https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/745ee18fd65684b685c7adc040efc55220f667b3/Crypto-Primitives-Specification.pdf
https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/745ee18fd65684b685c7adc040efc55220f667b3/Crypto-Primitives-Specification.pdf
https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/745ee18fd65684b685c7adc040efc55220f667b3/Crypto-Primitives-Specification.pdf
https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/745ee18fd65684b685c7adc040efc55220f667b3/CHANGELOG.md
https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/745ee18fd65684b685c7adc040efc55220f667b3/CHANGELOG.md
https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/745ee18fd65684b685c7adc040efc55220f667b3/CHANGELOG.md

2 Primality testing and verifiable parameter generation

This section primarily concerns changes made to primality testing (Section 7.1) and
parameters generation (Section 7.2).

Issue 1: Double-testing of primes

Description: GetEncryptionParameters in the primitives specification applies
Baillie-PSW and Miller-Rabin. Essentially a prime is tested twice using two dif-
ferent methods. The purpose of this was initially unclear. However, speaking to the
Swiss Post team directly, their intent seems to have been to initially apply Baillie-
PSW to a perceived performance advantage and apply Miller-Rabin as a final step
to ensure formal bounds exist on the probability the output p, ¢ are prime.

As we discuss in Section 7.3, except base-2 strong pseudoprimes, there is no perfor-
mance advantage to BPSW when testing composite integers, which accounts for the
overwhelming number of invocations of primality testing. The main speedup comes
when ¢ is prime, in which case BPSW runs several times faster than Miller-Rabin.
However, at the 3072-bit level, this even occurs less in than 0.1% of candidates,
at which point Miller-Rabin is then being applied anyway. Furthermore, if ¢ was
determined to be prime, testing BPSW and then Miller-Rabin on p is necessarily
slower than testing Miller-Rabin alone.

However, as we discuss in Section 9.4, if ¢ is prime, the primality of p can be
established without BPSW or Miller-Rabin.

Recommendation: The recommendation remains as it has for the past year: Dis-
continue the use of the BPSW primality test. As we show in Section 10.1, faster
methods exist, which also come with formal, deterministic bounds.

Issue 2: Unnecessary complexity in primality testing

Description: The primality testing description has added additional complexity
(Sec 7.1 of primitives spec version 1.2.1). The document now requires two two ap-
proaches to primality testing: (a) Swiss Post’s custom variant of the Baillie-PSW
test, but now also (b) a conventional application of Miller-Rabin. Why are both
approaches used? What are they contributing?

Recommendation: Switching to deterministic generation of safe primes can elimi-
nate reliance on external primality testing algorithms. A detailed proposal, including
algorithms, analysis, proofs, code and testing, is presented starting in Section 6.




Issue 3: Non-uniform prime generation

Description: The modification of GetEncryptionParameters() appears to be
based on my feedback in Addendum IT (January 2023) and appears to have elimi-
nated the domain separation issue. I recommended an approach to domain separa-
tion in the hash function that retained the overall functionality.

Swiss Post’s new approach, however, diverges from this. The new method no longer
invokes the hash on the counter value and tests the integer-ized hash value for
primality. Rather, the counter is incremented, sieving for non B-smooth values. It
is then the counter which is tested for primality. The result is that primes are now
no longer selected uniformly in the set of primes P. Rather, an integer is selected
uniformly, and then the next highest prime is selected.

This approach introduces a statistical bias due to varying gaps between primes. I
ran a basic test at the 1000-bit level and found that approximately 20% of primes
account for over 50% of the primes that this algorithm would select. Some primes
are more likely to be chosen than others.

This bias may not be of any particular consequence. However, compared to the
total cost of the modular exponentiations of the primality testing, the cost of siev-
ing for non B-smooth integers seems minor compared to the standard approach of
generating a random integer and testing for B-smoothness via trial division.

Recommendation: Please provide some analysis of this approach, both in terms of
the security cost (to what degree does uniformity in P matter), and the performance
benefit (quantified relative to the standard approach).

Issue 4: Non-standard approach to verifiable parameter generation

Description: Swiss Post’s new approach of increment/test/repeat departs
from the NIST standard approach to verifiable parameter generation of
hash/test/increment /repeat. See, e.g., Appendix C.3 of [4] or Appendix A.1 of [1].

Recommendation: Following with past recommendations, I encourage Swiss Post
to provide additional explanation in the primitives specification.




3 RecursiveHashToZq

This section examines changes made to the recursive hash (Section 4.2). In particular,
I examined their new approach to RecursiveHashToZq (Algorithm 4.9), which seeks to
minimize modulo bias.

Issue 5: No analysis or definitions of modulo bias mitigation

Description: The approach is to output the bytes necessary to reach all possible
values in Zg, plus and 256 excess bytes to mitigate the modulo bias, i.e., output
lg| + 256 bytes. Swiss Post says the modulo bias is now sufficiently, “small,” which
I don’t dispute. However, no analysis is provided.

Additionally, they claim the modulo bias is “negligible.” The word negligible is be-
ing used informally here. However, it also has a formal definition in this context.
Technically, since 256 is not a function of the security parameter, it’s not negligible,
at least not in the formal cryptographic sense of indistinguishability.

Recommendation: The modulo bias should be quantified and shown to be negli-
gible in the security parameter.




Re-Examination of System Version 1.3.0

In Sections 3 to 5, we discuss relevant findings in changes made to Swiss Post’s e-Voting
system in version 1.3.0. Specifically, we examine the changes made to the cryptographic
primitives specification document as of version 1.3.0.3 We focus primarily on the relevant
changes highlighted in Swiss Post’s Changelog.* We additionally review changes made
in the system specification document as of version 1.3.0 ° focusing again on relevant
changes highlighted in Swiss Post’s CHANGELOG.S

Findings. As in the previous release (see Section 1.4), the observed changes refine and
move the system in a positive direction. In this version, we report on some potential
errors in the specification and some more of our recurring themes relating to our rec-
ommendation that Swiss Post not only document changes but explain—in writing—its
design goals and the necessity and sufficiency of the (new) design.

Our primary concern in this version pertains to Post’s proposal that a voter’s date
of birth be used as an additional authentication factor and incorporated as part of what
they refer to as a “shared secret” between the server and voting client (along with the
SVK (start voting key) received in the mail).

Although we have not witnessed evidence of a widespread population-level breach of
this information in the Canadian context, we have seen some real-world anecdotal exam-
ples of dates of birth being compromised for specific individuals [3]. In these instances,
a compromised date of birth is henceforth and forever longer not secret and, therefore,
would offer no meaningful protection on top of the SVK.

At a minimum, the proposal to incorporate date of birth in the voter authentication
is essentially a one-off mention in the System specification and requires more detail.
Our high-level recommendation, therefore, is to see a broader-ranging conversation and
analysis of the real-world security requirements of voter credentials.

3 Swiss Post Cryptographic Primitives specification version 1.3.0. Available: https:
//gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/
664b671e35d95af20766cd5f05aef1£58bdbd147/Crypto-Primitives-Specification.pdf

4 Swiss Post Cryptographic Primitives Changelog for version 1.3.0. Available: https:
//gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/
664b671e35d95af20766cd5f05aef1£58bdbd147/CHANGELOG . md

5 Swiss Post  Cryptographic System  Specification  version  1.3.0.  Available: https:
//gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/
924de3e63a8ebdb962f5acba6964d321a8bc770e/System/System_Specification.pdf

6 Swiss Post System Specification Changelog for version 1.3.0. Available: https:
//gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/
924de3e63a8ebdb962f5acba6964d321a8bc770e/System/CHANGELOG . md


https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/664b671e35d95af20766cd5f05aef1f58bdbd147/Crypto-Primitives-Specification.pdf
https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/664b671e35d95af20766cd5f05aef1f58bdbd147/Crypto-Primitives-Specification.pdf
https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/664b671e35d95af20766cd5f05aef1f58bdbd147/Crypto-Primitives-Specification.pdf
https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/664b671e35d95af20766cd5f05aef1f58bdbd147/CHANGELOG.md
https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/664b671e35d95af20766cd5f05aef1f58bdbd147/CHANGELOG.md
https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/664b671e35d95af20766cd5f05aef1f58bdbd147/CHANGELOG.md
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/924de3e63a8ebdb962f5acba6964d321a8bc770e/System/System_Specification.pdf
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/924de3e63a8ebdb962f5acba6964d321a8bc770e/System/System_Specification.pdf
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/924de3e63a8ebdb962f5acba6964d321a8bc770e/System/System_Specification.pdf
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/924de3e63a8ebdb962f5acba6964d321a8bc770e/System/CHANGELOG.md
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/924de3e63a8ebdb962f5acba6964d321a8bc770e/System/CHANGELOG.md
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/924de3e63a8ebdb962f5acba6964d321a8bc770e/System/CHANGELOG.md

4 Changes to Cryptographic Primitives Specification

4.1 Clarification to x.509 Certificates

This section primarily concerns changes made to Digital Signatures and x.509 Certificates
(Section 6) in regards to Swiss Post’s remarks in the Changelog;:

Change 1A. [Code, Specification| Added additional properties in the x.509 certifi-
cates, clarified the description, and improved input validation for digital signatures
(feedback from Aleksander Essex).

x.509 certificates. I reviewed the changes against my remarks in Section 2.2 in my
2022 Re-evaluation (Addendum II) from February 13, 2023. Swiss Post has resolved my
comments concerning:

certificate serial numbers

x.009 version 3

revocation information
extensions handling self-signing.
digital signature algorithm
hash algorithm

Digital signatures. I reviewed Swiss Post’s changes relating to my remarks in Section
2.2 in my 2022 Re-evaluation (Addendum II) from February 13, 2023. They resolved my
remarks concerning Kleene star notation and arbitrary length outputs of the signature
function.

Issue 6: Non-standard hash function in digital signatures (Resolved)

Description: As pointed to in my 2023 Re-Examination (Addendum II), Swiss
Post continues a non-standard use of RecursiveHash in the signature algorithm.

Recommendation: None (Resolved). Swiss Post specified RSASSA-PSS at the
3072-bit level with SHA-256 as the signature hash function.




Issue 7: Signature functions should ingest messages, not hashes (Resolved)

Description: Currently, Algorithm 6.2 (GenSignature) applies the RecursiveHash
to the message before calling the Sign() function. The Sign() then applies its own
hash function (essentially, a hash of the hash), which seemed redundant.

Recommendation: None (Resolved). Swiss Post explains in the primitives speci-
fication (Section 6.3, version 1.3.0) that the application of RecursiveHash prior to
the invocation of Sign is to avoid having to specify file formats for mixed-format
messages.

Issue 8: Signature scheme should be fully specified

Description: In Algorithm 6.2, Swiss Post’s specifies the GenSignature algorithm
outputs a signature of 384 bytes (3072 bits). Where does 384 come from? This seems
to necessarily imply Sign() is an RSA-based signature.

Recommendation: If RSA signatures are intended, it should be specified along
with the padding scheme used (e.g., PKCS1.5, PSS, etc.)

Issue 9: Possible typo

Description: In Line 4 of Algorithm 6.2, the output of the Sign() operation says
to “See Algorithm 3.117, i.e., StringToByteArray ()

Recommendation: Confirm if this is a typo or intended.
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4.2 Clarifications to Argon2id Parameterization

This section primarily concerns changes made to the Argon2id specification (Section 4.5)
in regard to Swiss Post’s remarks in the Changelog;:

Change 1B. [Code, Specification] Added a section on Argon2id profiles containing
a justification of the chosen parameters (feedback from Rolf Haenni, Reto Koenig,
Philipp Locher, and Eric Dubuis).

Argon2id Specification. Swiss Post addressed several of my previous remarks about
the Argon2id specification. However, it appears to have introduced some issues.

Issue 10: Typo in Argon2id parameterization profiles

Description: Section 4.5 contains a table showing the Argon2id parameterization
profiles (STANDARD, LESS_MEMORY, TEST). The second column is labeled “Memory
(in GiB),” implying that the three profiles use 21, 16, and 14 GiB of memory,
respectively. However, this appears to be an error. In Section 4 (Parameter Choice)
of RFC9106, Item 1 specifies the standard memory sizes as “m=2"(21) (2 GiB of
RAM).” Here, m is the number of kibibytes (i.e., number of units of 2! bytes), not to
be confused with gibibytes (units of 230 bytes).” So 22! kibibytes = (221 .210)/230 =
2! =2 GiB.

Recommendation: The column should be changed to: “Memory (in KiB)” and the
21, 16 and 14 should be raised to the power of 2.

Issue 11: Define term

Description: Regarding Argon2id profiles, Swiss Post says: “The first profile STAN-
DARD, ... is considered uniformly safe by RFC9106.” It is unclear what ‘“uniformly
safe” means in this context, and RFC9106 does not appear to define it either.

Recommendation: Define “uniformly safe”.
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5 Changes to System Specification

5.1 Voter Authentication

This section primarily concerns changes made to voter authentication made (GetVoter-
AuthenticationData, Section 4.1.4) in regard to Swiss Post’s remarks in the Changelog:

Change 2A. Specified the new voter authentication protocol (feedback from Rolf
Haenni, Reto Koenig, Philipp Locher, Eric Dubuis, and Aleksander Essex).

Dates of birth for voter authentication. There are concerns about the suitability
of dates of birth in voter authentication. Swiss Post says, “The extended authentication
factor EA_id like the voter’s date of birth can help mitigate the risk of fraudulent voting
by making it more difficult for someone to use another person’s voting card. Here, the
start voting key is being used in combination with the voter’s date of birth as a “shared
secret.” There are several fundamental limitations to this approach:

1. Low entropy. Dates of birth are low entropy—about 15 bits in the best case, and
lower when factoring in population-level demographics and any partial information
known about the target voter. Of course, the entropy is zero bits if the attacker
knows the voter’s date of birth, which is a plausible scenario given the intersection
between the set of a voter’s friends and family and those who might reasonably have
opportunistic access to a voter’s voting card.

2. Attitudes around secrecy. Dates of birth are not regarded as a secret by many vot-
ers, who share personal information widely across the internet, business services, and
social media. It is also not always respected as a secret by governments themselves.
For example, the vaccine passport system in various Canadian provinces requires
individuals to widely show a QR code containing a digitally-signed attestation of
vaccination, which includes the person’s date of birth.

3. Cannot be reissued. Dates of birth are static and cannot be reissued/reset. They
are always one population-level data breach away from completely nullifying their use
as a “shared secret” for the entire population for the rest of their lives. At a minimum,
this will always apply to some non-empty subset of the people whose dates of birth are
already widely known. For those individuals, it will provide no meaningful protection.

Issue 12: Dates of birth as an authentication credential

Description: See discussion above.

Recommendation: As an ideal outcome: find another approach to voter authenti-
cation. At a minimum: specify concrete security requirements and provide a cyber-
risk assessment of dates of birth as an extended authentication factor. Swiss Post
should openly acknowledge these limitations if it intends to pursue this approach.

12



I reviewed the the DeriveCredentialId() and DeriveBaseAuthenticationChallenge (),
GetAuthenticationChallenge(), and VerifyAuthenticationChallenge () functionali-
ties (Section 3.5—Voter Authentication). I also reviewed RFCs 6238 and 4226, which form
the basis of the AuthenticateVoter () functionality (Section 5.1-Systems specification).
Overall, I found no major issues.

Issue 13: Domain separation

Description: In Algorithm 3.9 DeriveBaseAuthenticationChallenge() Line 2:
The extended authentication factor and start voting keys are being concatenated
prior to being input to the Argon2id hash. Similar to my comments in Annex 2
(relating to the ElGamal parameter generation), this does not enforce an explicit
domain separation.

For example, an extended authentication factor EA_id consisting of a date of birth
1970-01-01 and a 24 character Start Voting Key ABCDEFG... would produce the
same key k as a year/month of birth string 1970-01- and a 26 character Start Vot-
ing Key 01ABCDEG... This possibility appears to be precluded by Table 10, which
specifies the length 1_SVK as a fixed 24 base32 characters. However, once again,
as a matter of cryptographic design, a security property like collision resistance
should not rely on external requirements such as 1_SVK and EA_id always hav-
ing the same format. A similar concatenation appears in line 6 of Algorithm 5.1
GetAuthenticationChallenge.

Recommendation: Enforce domain separation of types.

Issue 14: How is Argon2id less memory profile applied?

Description: Several algorithms throughout the systems specification (see e.g., Al-
gorithm 5.1) specify the “less memory” Argon2id profile. In Section 3.6, the following
text was added: “In the crypto primitives specification, we define different Argon2id
profiles. Each time Argon2id is used, we specify which of these profiles is used.”

Recommendation: Add a brief explanation describing how a memory profile is
chosen and what the threat model is.

5.2 Sequence Diagrams

Swiss Post added sequence diagrams in Sections 5.2 and 5.3 with the following remark
in the Changelog:
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Change 2B. Completed the sequence diagrams of the sub-protocols SendVote and
ConfirmVote with the messages from the voter authentication protocol (feedback
from Rolf Haenni, Reto Koenig, Philipp Locher, Eric Dubuis, and Aleksander
FEssez).

I reviewed the sequence diagrams and found no issues or inconsistencies.
5.3 Argon2id Profile
Swiss Post made the following remark in the Changelog:
Change 2C. Clarified the Argon2id profile used with references to the crypto-

primitives-specification (feedback from Rolf Haenni, Reto Koenig, Philipp Locher,
Eric Dubuis, and Aleksander Essex).

See my remarks in Section 4.2.
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Improved Safe Prime Generation

6 Design Goals for Safe Prime Generation Algorithms

Sections 6 to 10 discuss potential improvements to Swiss Post’s safe prime generation
method. The generation of discrete logarithm domain parameters is fundamental not
only to the security of election verification but to the perceived legitimacy of the proofs
themselves. These parameters must be selected carefully, with minimal degrees of free-
dom, to reduce the opportunity for cryptographic trapdoors, such as those proposed by
Haines et al. [5] in a prior ancestor to the current system.

Swiss Post’s high-level approach to verifiable parameter generation has been to use
an election’s fully qualified name as a seed to a pseudo-random function which outputs
complete, valid, and secure parameters for that specific election. Overall this approach is
sound, although the specific details of which have been a subject of ongoing discussion.
I have raised some of these issues consistently throughout the examination process:

1. Analysis of the Swiss Post e-Voting System, November 26th, 2021:
e I recommended specifying a concrete primality testing algorithm for IsProba-
blePrime()
2. 2022 Re-evaluation of the Swiss Post e-Voting System, September 30th, 2022:
e [ recommended using Miller-Rabin instead of BPSW as a primality test, as the
former has formal guarantees.
3. 2022 Re-evaluation of the Swiss Post e-Voting System (Addendum II),
February 13th, 2023:
e [ restated my recommendation to use Miller-Rabin for its formal guarantees.

In response to these recommendations, Swiss Post has continued to use the BPSW test
but has added a Miller-Rabin in system version 1.2.3 (see Section 2). Swiss Post’s concern
(as they explained to me in direct conversation) relates to performance. In their testing,
safe prime parameter generation at the 3072-bit level is slow, and increased runtime is a
barrier for them.

To balance these considerations, the purpose of the following sections is to take a
more in-depth look into other options for safe prime generation. As a design goal, the
objective is a solution offering the following three properties simultaneously:

e Formal guarantees on the probability that a composite number is misidentified as
prime,

e Faster runtime than their current proposal,

e Parsimonious design (reliant on external primality testing functionalities only as nec-
essary).



7 Basic Approaches to Primality testing

7.1 Strong Probable Primes and the Miller-Rabin Test

Let p > 2 be a positive odd integer and let a > 1 be a positive integer such that a 1 n.
Let p — 1 be written as 2°d such that d is odd. We say p is a strong probable prime to
base a if either:
a=1 (mod p),
or
(ah)? = -1 (mod p)

for some 0 < r < s. If pis a strong probable prime base a and is composite, then p is called
a base-a pseudoprime. The Miller-Rabin test to k-rounds is the strong probable prime
test repeated for k distinct uniform bases {ay, ..., ax} ¢ Z*. An integer p passing k such
tests is composite with probability less than (i)k See e.g., |7] for additional information.

7.2 The Baillie-PSW Test

The Baillie-PSW test [2,8] combines two distinct primality tests whose respective pseu-
doprimes are conjectured to be mostly non-overlapping. An integer p > 2 is a strong
BPSW probable prime if:

e p is a strong probable prime to base 2,
e p is a Lucas probable prime.

A Lucas probable prime® is an integer p for which p divides specific elements of a Lucas

sequence with an applicable parameterization (such as proposed in [8]). The detailed
explanation of the Lucas probable prime test is outside the scope of this document. See
Baillie and Wagstaff [2] for further discussion.

Compared to Miller-Rabin, no formal error bounds have been proven for the BPSW
test, and infinitely many pseudoprimes are conjectured to exist. To date, however, no
counterexamples have been even been found, and the test seems to have gained popularity
in recent years due to a perceived performance advantage over Miller-Rabin.

7.3 Speed Comparison

When p is composite, the execution time of BPSW is identical to Miller-Rabin for most
values of p. In that situation, the compositeness of p is witnessed (proven) by a single
strong probable prime test, and most composite p’s are rejected at that stage.

If p is prime, the relative run times consist of the excess (k — 1) rounds of the strong
probable prime testing of Miller-Rabin set against the BPSW’s Lucas test. Since BPSW
has no formal error bounds, it has no established (proven) equivalence of Miller-Rabin
round count k. However, as a concrete example, as of version 6.2.0, gmp has begun
substituting k& = 24 Miller-Rabin rounds with the BPSW test.? In performance terms,
the cost of the Lucas test in BPSW is set against 23 excess rounds of Miller-Rabin.

8 Not to be confused with Lucas’ primality test, which is based on the knowledge of the factorization

of p—1.
® https://gmplib.org/gmp6.2
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As a concrete comparison when p is prime k = 24, rounds of Miller-Rabin cost
approximately 26 times the cost of a single strong probable prime test at the 1000-bit
level. By comparison, BPSW costs 4.19 times, making BPSW almost six times faster.!?

However, because prime generation algorithms typically involve picking (and reject-
ing) numerous composite candidates before a prime is found, the aggregate performance
increase is not significant in this setting. For example, at Swiss Post’s nominal 3072-bit
level, and with trial division of small prime factors up to several tens of thousands, a
primality generation algorithm will still generally have to test (and reject) thousands of
composite candidates before finding a prime. For each rejected candidate, the Miller-
Rabin and BPSW tests consist of a single (failed) strong probable prime test and take
an identical amount of time.

8 Basic Approaches to Generating Safe Primes

In this section, we explore basic approaches to generating safe primes and review the
importance of algorithmic efficiency of testing a candidate for small prime factors before
the main primality test is applied. A safe prime is a prime of the form p = 2¢g + 1 where
q is also prime. Prime ¢ has been historically referred to as a Sofie Germain prime.

8.1 Naive generation of a k-bit safe prime

Let PsuedoRandom(x,y,z) be a function that returns an x-bit integer according to a
pseudo-random function f, . : Z — Z selected uniformly from the set of z-bit pseudo-
random functions by the pair (y,z). Let NoSmallFactors(x, B) be a function that
returns True if input x contains no small prime factors up to a bound B. It returns
False otherwise. Let IsPRP(x) be a probabilistic primality test that returns True if = is
a probable prime (according to the particular test implemented inside). It returns False
otherwise.

Algorithm 1 presents a basic (naive) algorithm for generating random k-bit safe
primes. See, e.g., Algorithm 2.86 in Handbook of Applied Cryptography [7].

8.2 Swiss Post’s Initial Approach to Generating Safe Primes

Swiss Post’s initial safe prime generation approach was similar to the naive approach
but ran considerably slower as it did not pre-filter candidates containing small factors.

Let Is_BPSW_PRP be the Baillie-PSW probable primality test. Swiss Post’s initial
approach (see primitives specification, version 1.1.0) is depicted in Algorithm 2. Note
this is not a verbatim re-statement of the algorithm. It has been simplified in several
places for notional and conceptual clarity.

Observe Swiss Post’s approach (Algorithm 2) differs from the naive approach Algo-
rithm 1) in three ways. First is that integers are selected deterministically and pseudo-
randomly, which is not of particular relevance or consequence to this discussion. Sec-
ond is that Swiss Post concretely implemented their primality test as the Baillie-PSW
probabilistic test, which is fast but offers heuristic (instead of formal) bounds on the
probabilities.

10 empy?2 primality testing benchmarks. Available: https://github.com/aleaxit/gmpy/issues/265
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Algorithm 1: Naive k-bit safe prime generation
Input: Bit length k, trial division bound B, seed value seed
Output: k-bit safe prime p

11+ 0;

2 while True do

3 141+ 1;

4 q + PseudoRandom(k — 1,14, seed) ; /* Pseudo-random (k-1)-bit int */
5 P+ 2q+1;

6 if NoSmallFactors(q, B) then

7 if IsPRP(q) then

8 if NoSmallFactors(p, B) then
9 if IsPRP(p) then

10 ‘ return p

11 end

12 end

13 end

14 end
15 end

Importance of checking for small factors before primality testing. Swiss Post’s
initial approach to safe prime generation was unnecessarily slow due to the absence of a
preliminary check of small factors (i.e., NoSmallFactors) prior to running the relatively
costly BPSW primality test.

Let Pp = {3,5,7,...,pn} be the n odd primes less than or equal to some bound
B > 1. The probability that a randomly chosen (odd) integer x contains no small factors
below B is the probability that x # 0 (mod p;) for all p; € Pg, i.e.,

1
P(NoSmallFactors(x,B) = True) = H M

Vpi€Pp pi

Using this equation, we can estimate the probability that a random odd integer x contains
a small factor below B and hence the probability NoSmallFactors(x,B) will reject x.
Table 1 demonstrates the importance of running NoSmallFactors() as a preliminary
step for efficiently filtering composite candidates. For example, for B = 100, approxi-
mately 76 out of 100 candidates can be rejected without running a primality test. The
implementation of NoSmallFactors(x,B) amounts to running ged(z, pg) where pp is
the largest odd primorial less than B:

PB = H Di-

Vp;€Pp

Table 2 shows the size of pp in bits for increasing bounds B. For example, for B = 100,
the cost of NoSmallFactors(x,B) amounts to a single gcd between x and a 120-bit
integer. Optimal bounds for B would depend on |z| weighed against the diminishing
returns of running NoSmallFactors() on increasing bounds B.
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Algorithm 2: Swiss Post’s initial safe prime generation approach (primitives
spec. 1.1.0)
Input: Bit length k, seed value seed
Output: k-bit safe prime p
1 1<+ 0
2 while True do

3 141+ 1;
4 q < PseudoRandom(k — 1,4, seed) ; /* Pseudo-random (k-1)-bit int */
5 g+ q+1—(q (mod 2)); /* Ensure q is odd */
6 P+ 2q+1;
7 | if Is_BPSW_PRP(q) then
8 if Is_BPSW_PRP(p) then
9 return p
10 end
11 end
12 end
B
25 | 50 | 7 | 100 | 125 | 150 | 175 | 200

67.3% | 72.3% | 748% | 75.9% | 77.0% | 77.9% | 78.6% | 79.2%
Table 1. Probability a random odd integer contains a small factor below bound B, i.e.,
Pr(NoSmallFactors(x,B) = False).

B
25 | 50 | 75 | 100 | 125 | 150 | 175 | 200

| lps (bits) | 27 | 59 | 95 [ 120 | 154 | 180 | 226 | 272 |
Table 2. Computational cost of NoSmallFactors(x,B) in terms of ged(z, p).

8.3 Swiss Post’s Modified Approach to Safe Prime Generation

Instead of pseudo-randomly generating integers and checking for small factors (via a
NoSmallFactors() functionality), Swiss Post’s modified approach (see primitives spec.
1.2.1) generates an initial pseudo-random candidate and uses a sieving-based approach
to skip over candidates containing small factors.

Let Sieve(x,B) be a function that accepts an integer x and returns the next largest
integer that is of the form 6x + 5'' and is not a multiple of any number below a bound
B. Let MillerRabin(x,k) return True if k iterations of the Miller-Rabin primality test
performed on x show x is a probable prime. Swiss Post’s modified approach to safe prime
generation is depicted in Algorithm 3.

11 Sofie Germain primes ¢ > 7 are necessarily of the form 6z 4+ 5. Consequently, safe primes p are of the
form 12z + 11.
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Algorithm 3: Swiss Post’s modified safe prime generation (primitives spec.
1.2.1)

Input: Bit length k, sieving bound B, seed value seed

Output: k-bit safe prime p

1 ¢’ + PseudoRandom(k — 1,0, seed) ; /* Pseudorandom (k-1)-bit int */
2 ¢+ ¢ — (¢ (mod 6))+5 ; /* Ensure ¢ =5 (mod 6) */
3 while True do

4 q < Sieve(q, B) ; /* Next ¢ =6x+5 with no divisor below B */
5 P+ 2q+1;

6 if Is_BPSW_PRP(q) then

7 if Is_BPSW_PRP(p) then

8 if MillerRabin(q,64) then

9 if MillerRabin(p,64) then

10 ‘ return p

11 end

12 end

13 end

14 end
15 end

9 Improved Approaches to Safe Prime Generation

Swiss Post’s approach of applying BPSW tests to both p and ¢ is mathematically un-
necessary. If ¢ is prime, p’s primality can be proven in a single round of Miller-Rabin,
leveraging a recent result from the literature 9], which we show in Theorem 9.3.

We use this observation to propose a novel (to our knowledge) algorithm for safe
prime generation in a manner that: (a) offers the formal guarantees of the Miller-Rabin
test while simultaneously (b) running slightly faster than a generation algorithm using
the Baillie-PSW test (see Algorithm 4). From there, we use Pocklington’s theorem to
extend this generation algorithm (see Algorithm 6) into one that:

1. Outputs deterministic (as opposed to probabilistic) safe primes.
2. Requires no external primality testing functionalities (Miller-Rabin, Baillie-PSW).
3. Runs slightly faster than all the other approaches presented in this section.

9.1 Mathematical Preliminaries

We begin with four theorems relevant to testing whether an integer p = 2¢g + 1 is prime
given the primality of g. The first theorem establishes a base case for testing in this
setting. The second well-known theorem, due to Pocklington, improves on the base case.
The third theorem, a recent result due to Ramzy [9], extends Pocklington’s theorem to
prove that a single Fermat primality test establishes the primality of p given the primality
of ¢. Finally, we present a corollary extending Ramzy’s result to a single round of the
Miller-Rabin test.

Theorem 9.1 (Primality test of p with known factorization of p — 1). Let p be
a integer and let F = {f1,..., fx} be the set of prime divisors of (p — 1). If there exists
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an integer a such that:

a? =1 (mod p) and
a®PV/Fi £1  (mod p) Vf; € F,

then p is prime.
Proof. See Fact 4.38 of Handbook of Applied Cryptography [7]. O

Remark: If ¢ and p = 2¢ + 1 are primes, every integer 2 < z < (p — 1) has order either
q or 2¢ modulo p. For all such integers x, clearly #2¢ = 1 (mod p) by Fermat’s little
theorem and 22 # 1 (mod p) since x & {—1,1} by definition. Let a be a quadratic non-
residue modulo p. Then a has order 2q and therefore a? # 1 (mod p). In other words, if
p is a safe prime, half of the values in the range 2 < a < (p — 1) (the set of quadratic
non-residues) establish p’s primality using this test.

From the perspective of efficiency, however, this approach requires, on average, two
applications of the test for differing bases a’ # a.

Theorem 9.2 (Pocklington’s theorem for p with large factor of p — 1). Let p
be an integer and q be a prime such that q | (p — 1) and q > /p — 1. If there exists an
integer a such that

a?'=1 (mod p) and,
ng(a(p_l)/q - 17p) = ]-7

then p s prime.

Proof. See [6]. 0

Remark: Applied to the special case of safe primes p = 2¢ + 1, Pocklington’s theorem
can be further simplified to give us a more efficient test wherein any base in the range
2 <a < (p—1) can be used to certify the primality of p in a single application of the
test. This simplification is given in the following corollary.

Theorem 9.3 (Ramzy’s corollary). Let q be prime and let p = 2q+1. For any integer

a?'=1 (mod p),
then p is prime.

Proof. If q is prime and p = 2¢ + 1, then the pre-conditions of Pocklington’s theorem
are satisfied, i.e., ¢ is a prime such that ¢ | (p — 1) and ¢ > \/p — 1. If p is prime, clearly
the first criterion of Pocklington’s theorem (i.e., a?~! = 1 (mod p)) is satisfied by any
integer a as per Fermat’s little theorem.

The second criterion, gcd(a(pfl)/ 7 —1,p) = 1,is equivalent to the statement aP=1/a #
1 (mod p). In the safe prime setting this simplifies to a® # 1 (mod p). This criterion is
satisfied by any non-square root of unity in Zj, i.e., for any 2 < a < (p—1). a
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In summary, if ¢ is prime, the primality of p = 2¢ + 1 can be deterministically certified
in a single Fermat primality test. To our knowledge, this observation was first made only
recently (i.e., in the past year) by Ramzy (see Corollary 2.4 of [9]).

This efficient safe prime test can be used to construct a more efficient safe prime
generation algorithm. However, since Miller-Rabin is generally more widely implemented
than Fermat’s test, it is useful to establish that a single round of Miller-Rabin could take
the place of the Fermat test in a practical implementation.

Theorem 9.4 (A single-round Miller-Rabin safe prime test). Let ¢ be a prime
and let p = 2q + 1. For any integer 2 < a < (p — 1), if p is a base-a strong probable
prime, p is prime.

Proof. By Ramzy’s corollary, if p is a base-a Fermat probable prime, p is prime. The
proof proceeds by showing if p is a base-a strong probable prime, p is a base-a Fermat
probable prime.

Recall an integer p is a strong probable prime base a if:
a?’=1 (mod p)
or there exists some 0 < r < s such that
a?7=—-1 (mod p).
In the safe prime setting, s = 1. Therefore the second criterion reduces to a single case:
a’=-1 (mod p).
In other words, p is a base-a strong probable prime if:
a?=b (mod p)
for b € {—1,1}. Squaring both sides, we have:
(a9)?=b* (mod p)

a**=1 (mod p)
a? =1 (mod p).

Therefore p is also a base-a Fermat probable prime. Therefore p is prime (specifically a
safe prime) by Ramzy’s corollary. ad

9.2 A Faster Primality Test of Safe Prime p

We propose a new algorithm for safe prime generation leveraging Ramzy’s corollary to
replace the full primality test of safe prime candidate p. Our approach is to test p first:
We apply a strong probable prime test (i.e., single round Miller-Rabin) on p to a fixed
base (without loss of generality, we use 2). See Algorithm 4.

This approach provides two benefits relative to Swiss Post’s improved approach (Al-
gorithm 3). Firstly, there is now no longer a performance benefit to using BPSW; any
candidate p passing the initial strong probable prime test does not require the additional
(k — 1) rounds of the naive approach if ¢ is subsequently found to be prime.
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Algorithm 4: Safe prime generation with faster primality test of p

Input: Bit length k, trial division bound B, seed value seed, minimum required
rounds of Miller Rabin A
Output: k-bit safe prime p
1 1< 0;
2 while True do

3 141+ 1;

4 p’ + PseudoRandom(k, i, seed) ; /* Pseudorandom k-bit integer */
5 p+p —(p (mod 12)) + 11 ; /* Ensure p =11 (mod 12) */
6 g—p>1; /* Logical right shift computing q <+ (p—1)/2 */
7 if NoSmallFactors(p,B) then

8 if NoSmallFactors(q,B) then

9 if MillerRabin(p,1) then

10 if MillerRabin(qg,\) then

11 return p

12 end

13 end

14 end

15 end
16 end

Theorem 9.5 (Correctness of Algorithm 4). Let p = 2q + 1 be the output of Algo-
rithm 4.

A
1
Pr(p is a safe prime) > 1 — <4> .

Proof. By definition, the probability that p is a safe prime is equivalent to the joint
probability that p and ¢ are prime:

P(p is prime N q is prime) = P(p is prime | ¢ is prime)P(q is prime)

Algorithm 4 returns p (resp. ¢) if and only if MillerRabin(p, 1) = True and
MillerRabin(q, A\) = T'rue. Given this,

Pr(p is prime| q is prime) = 1

as per Theorem 9.4, and

I\
Pr(q is prime) > 1 — <4)
as per standard error-bounds of Miller-Rabin (see, e.g., Fact 4.25 of [7]). 0

Performance of Algorithm 4. In Swiss Post’s improved algorithm (Algorithm 3),
each candidate ¢ (and subsequently p) is subjected to a BPSW test. Additionally, as a
final check, & = 64 rounds of Miller-Rabin are applied. By comparison, if Algorithm 4
finds p to be a strong probable base-2 prime, we need not apply the Lucas test (as in
BPSW). Rather, we can immediately move on to testing ¢. For this, we use Miller-Rabin
only.
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For most composite values of p, both Algorithms 3 and 4 will reject p at the initial
base-2 strong probable prime test and therefore will have the same runtime in such cases.

Relative to Swiss Post’s approach, Algorithm 4 completes primality testing on p
faster. When p is found to be a base-2 strong probable prime, Algorithm 4 moves on
to testing ¢ with the Miller-Rabin test, while Algorithm 3 continues into the Lucas test
and eventually moves on to the BPSW test on q. If ¢ is prime, the BPSW test is faster.
But this speed-up is only realized on the final (winning) candidate out of the thousands
of candidates expected at the 3072-bit level. Based on our benchmarking experiments,
Algorithm 4 is slightly faster than the Swiss Post approach—by approximately 10%.

9.3 Fast Deterministic Generation Based on Pocklington’s Theorem

Recall Pocklington’s theorem allows us to efficiently and deterministically test the pri-
mality of a number n when a large prime factor of n — 1 is known. In this section, we use
Pocklington’s theorem (see Theorem 9.2) to improve the performance of Algorithm 4. We
proceed in two steps. The first step generates ¢ based on what will become a large prime
factor s|(¢ — 1). The second step extends this approach toward its conclusion: beginning
with a known prime and incrementally and deterministically generating larger primes
from it.

Faster Pocklington-based generation of q. The high-level approach has three com-
ponents:

1. Generate a prime s of size [IM%} by calling a subroutine PseudoRandomPrime (k, seed
A) which outputs a pseudo random k-bit prime using a standard primality generation
approach, such as Algorithm 1 with A rounds of Miller-Rabin.

2. Iteratively generate random (even) integers r of size UMT_lJ and apply Pocklington’s
test on ¢ = rs + 1 to test the primality of q.

3. Test p = 2¢q + 1 for primality using a strong probable primality test (as per Theo-
rem 9.4).

This approach is shown in Algorithm 5. Our tests show this approach runs slightly
faster than Swiss Post’s modified approach (Algorithm 3). In the Swiss Post version,
the candidate q is generated randomly, and the initial round of the Miller-Rabin strong
probable prime test requires a full modular exponentiation of length |¢| when ¢ = 3
(mod 4) (i.e., when (¢ — 1)/2) is odd). By contrast, we can check the second element
of Pocklington’s criterion (i.e., if ged(2° (mod ¢) — 1,¢) = 1), which requires a shorter
modular exponentiation of length |g|/2. Approximately half of the candidates of ¢ can
be eliminated at this stage without proceeding to the full |g| exponentiation resulting in
an overall speed-up of approximately 25%.

Deterministic generation. In this section, we extend the generation of ¢ to its natural
conclusion by using Pocklington’s theorem, to begin with a small known prime and iter-
atively generate successively larger primes up to |¢|. The result is a safe prime generation
algorithm that is fully deterministic, i.e., the probability that ¢ or p is composite is zero.
A related approach for DSA groups is described in FIPS 186-5 Appendix B.10 [1]. Our
high-level approach is as follows:
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Algorithm 5: Faster Pocklington-based generation of ¢

Input: Bit length k, trial division bound B, seed value seed, minimum required

rounds of Miller Rabin A
Output: k-bit safe prime p

1 1< 0;
2 $ + PseudoRandomPrime([k/2], seed, A) ; /* Generate prime */
3 while True do
4 i1+ 1;
5 r’ < PseudoRandom(|k/2],1, seed) ; /* Pseudorandom integer */
6 r < r—(r (mod 2)) ; /* r is even */
7 g+ rs+1;
8 P+ 2q+1;
9 if ¢ (mod 6) =5 then
10 if NoSmallFactors(r,B) then
11 if NoSmallFactors(q,B) then
12 if NoSmallFactors(p,B) then
13 x <+ 2" (mod q) ; /* Pocklington test */
14 if ged(z — 1,9) = 1 then
15 if ° (mod ¢q) = 1 then
16 if 2?~1 (mod p) = 1 then
17 ‘ return p ; /* Ramzy’s Corollary */
18 end
19 end
20 end
21 end
22 end
23 end
24 end
25 end
1. Begin with a small known prime s.'2
2. Select random even integers b < t < s, until Pocklington’s criterion finds u = st + 1
is prime.
3. If |u| = |g|, output u. Otherwise, set s <— u and return to Step 2, adjusting the lower
bound b appropriately in the final iteration to ensure |u| = |g].
4. Run Algorithm 5 with s < u instead of s < PseudoRandomPrime ().

This approach is shown in Algorithm 6.

10

As a benchmark comparison, we implemented each safe prime generation algorithm.
Tests were conducted on a 3.6GHz 8-Core Intel Core i9 using Python 3.8, gmpy2 2.1.5,
and gmp 6.2.

Comparison of Safe Prime Generation Techniques

1.13

12 The primality of s can be efficiently proven, e.g., through exhaustive trial division.
13 gmpy2 Python extension for gmp. Available: https://pypi.org/project/gmpy2/
gmp multi-precision arithmetic library. Available: https://gmplib.org/
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Algorithm 6: Fully deterministic generation of p, q
Input: Bit length k, trial division bound B, seed value seed
Output: k-bit safe prime p
11+ 0
2 seed primes =[...]; /* List of small, efficiently provable primes */
3 s < PseudoRandomChoice(seed primes, seed)
4 while True do

5 | i=i+1;
6 b+ [s/2]; /* Adjust so |u| = |k — 1| in the final round */
7 t' + PseudoRandom(b, 3,14, seed) ; /* Pseudorandom integer b <t < s */
8 t <+ t'— (¢t (mod 2)) ; /* t is even */
9 u<—ts+1;

10 if NoSmallFactors(u,B) then

11 z + 2% (mod u) ; /* Pocklington test */

12 if ged(z — 1,u) = 1 then
13 if * (mod u) =1 then
14 if |u| = (k —1) then
15 ‘ break ; /* u is prime and |u|=k—1 */
16 else
17 ERERY
18 end
19 end

20 end

21 end

22 end

23 p < Algorithm5(k, B, seed) ; /* Run Algorithm 5 with the u found above,
replacing Line 1 with s+« u. */
24 return p;

For each algorithm, we generated 100 safe primes at the |p| = 3072 bit level and
recorded the average (mean) runtime. For the trial division step, we computed the great-
est common divisor between the prime candidate and a B-primorial (product of distinct
primes up to bound B). We chose B = 20k where k is the bit length of the given prime
being generated (which varies in the case of Algorithms 5 and 6). The approach was
heuristically chosen through experimentation to find the optimal runtime on the test
platform.

As an additional implementation note, the list of small provable seed_primes in
Algorithm 6 must not be too small. Otherwise, there may be insufficiently many options
for t in the first iteration of the loop to yield a prime v = ts + 1.

10.1 Results and Findings

Our results are shown in Table 3. Our findings suggest that Pocklington-based deter-
ministic prime generation is a promising approach to satisfying our design goals set out
in Section 6. In particular, Algorithm 6 offers: (1) formal, deterministic guarantees, (2)

26



faster run times (29% faster than Swiss Post’s modified approach)!* and, (3) a simpler,
self-contained design with no reliance on external primality testing software libraries.

Safe Prime Genera- Mean runtime (s) External Testing Formal Guarantees
tion Algorithm Dependencies

Swiss Post Initial Not tested Baillie-PSW None (p and ¢q)
(Algorithm 2)

Swiss Post Modified 182 (100%) Baillie-PSW and Probabilistic  error
(Algorithm 3) Miller-Rabin bounds in p and ¢
Faster primality test 164 (90%) Miller-Rabin Probabilistic  error
on p (Algorithm 4) bounds in ¢

Faster Pocklington- 135 (74%) Miller-Rabin Probabilistic  error
based generation of bounds in large
g (Algorithm 5) factor of (g — 1)
Deterministic gener- 129 (71%) None Deterministic

ation of p and ¢ (Al-

gorithm 6)

Table 3. Comparison of speed, implementation complexity, and formal security guarantees of various
safe prime generation strategies. Benchmarks are an average of 100 tests at the |p| = 3072 bit level.
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A

Implementation of Swiss Post’s Modified Generation (Algorithm 3)

Python implementation of Swiss Post’s improved safe prime generation algorithm. Note:
For a more direct comparison, we did not implement Swiss Post’s sieving approach.

© 0w N U W N =
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B W N R O © U e W N = O

import gmpy2
import random

B =%k x 20 # Trial division bound -- heuristically chosen
primorial = gmpy2.primorial(B) // 2 # 0dd B-primorial
random.seed('Election Name Goes Here')

def generate_safeprime(k=3072):
while True:
g_prime = gmpy2.mpz(random.randrange(2**(k-1), 2*xk)) >> 1
q = q_prime - (q_prime % 6) + 5
p=2%*q+1

# Trial division (instead of sieving)
if gmpy2.gcd(q, primorial) == 1:
if gmpy2.gcd(p, primorial) == 1:
# Baillie-PSW tests
if gmpy2.is_bpsw_prp(q):
if gmpy2.is_bpsw_prp(p):
# Additional Miller-Rabin tests
if gmpy2.is_prime(q, 64):
if gmpy2.is_prime(p, 64):
return p
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B

Implementation of Faster Primality Test of p (Algorithm 4)

Python implementation of safe prime generation with deterministic primality testing of p.

© 0 N s W N =
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import gmpy2
import random

B =%k * 20 # Trial division bound -- heuristically chosen
primorial = gmpy2.primorial(B) // 2 # 0dd B-primorial
random.seed('Election Name Goes Here')

def generate_safeprime(k=3072):
while True:
pp = gmpy2.mpz(random.randrange (2**(k-1), 2%*k))
p=pp - (pp % 12) + 11
q=p>1

# Trial division
if gmpy2.gcd(p, primorial) == 1:
if gmpy2.gcd(q, primorial) == 1:
# Ramzy's corollary test on p
if gmpy2.is_strong_prp(p, 2):
# 64 rounds of Miller-Rabin on q
if gmpy2.is_prime(q, 64):
return p
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C Implementation of Partial Pocklington Test on q (Algorithm 5)

Python implementation of safe prime generation using deterministic primality testing of
p and probabilistic generation of ¢ using Pocklington’s theorem.

1 import gmpy2

2 import random

3

4 B =k *x 20 # Trial division bound -- heuristically chosen
5 primorial = gmpy2.primorial(B)//2 # 0dd B-primorial
6 random.seed('Election Name Goes Here')

7

8 def generate_s(k, s_min, s_max):

9 while True:

10 s = gmpy2.mpz(random.randrange(s_min, s_max))
11 s = gmpy2.bit_set(rp, 0) # 0dd s

12 # Trial division

13 if gmpy2.gcd(s, primorial) == 1:

14 # 64 rounds of Miller-Rabin on s

15 if gmpy2.is_prime(s, 64):

16 return s

17

18

19 def generate_safeprime(k=3072):

20 s_max = 2 *x (k//2)

21 s_min = s_max // 2

22

23 s = generate_s(k, s_min, s_max) # Generate seed prime s
24 r_max = 2*x(k-1) // s # r < s per Pocklington's criterion
25 r_min = 2x*x(k-2) // s

26

27 while True:

28 rp = gmpy2.mpz(random.randrange(r_min, r_max))
29 r = gmpy2.bit_clear(rp, 0) # Even r

30 q=r *xs +1

31 p=2%*xq+1

32

33 if (q % 6) == b5:

34 # Trial division

35 if gmpy2.gcd(q, primorial) == 1:

36 if gmpy2.gcd(p, primorial) == 1:

37 # Pocklington Primality test of q
38 x = pow(2, r, q)

39 if gmpy2.gcd(x-1, q) == 1:

40 if pow(x, s, @) == 1:

41 # Ramzy's corollary on p
42 if pow(2, p-1, p) == 1:
43 return p
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D Implementation of Fully Deterministic Generation (Algorithm 6)

Python implementation of safe prime generation using fully deterministic generation of
q (Pocklington’s theorem) and deterministic primality testing of p (Ramzy’s corollary).

1 import gmpy2

2 import random

3

4 random.seed('Election Name Goes Here')

5 seed_primes = [101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
— 173, 179, 181, 191, 193, 197, 199]

6

7

8 def pocklington_prime(s, s_min, s_max):

9 if s **x 2 < s_min:

10 t_max = s

11 t_min = s // 2

12 else:

13 t_max = s_max // s

14 t_min = s_min // s

15

16 B = 2 * gmpy2.bit_length(s) * 20 # Output has length [u/ = 2#*s

17 primorial = gmpy2.primorial(B)//2

18

19 while True:

20 tp = gmpy2.mpz(random.randrange(t_min, t_max))

21 t = gmpy2.bit_clear(rp, 0) # Even t

22 =t *xs +1

23

24 # Trial division

25 if gmpy2.gcd(u, primorial) == 1:

26 x = pow(2, t, u)

27 # Pocklington primality test of u

28 if gmpy2.gcd(x-1, u) ==

29 if pow(x, s, uw) ==

30 return u

31
32
33 def generate_s(k, s_min, s_max):

34 s = random.choice(seed_primes)

35

36 while True:

37 s = pocklington_prime(s, s_min, s_max)

38 if s > s_min:

39 return s

40

41

42 def generate_safeprime(k=3072):

43 s_max = 2 ** (k//2)

44 s_min = s_max // 2

45

46 s = generate_s(k, s_min, s_max) # Deterministically generate s
47

48 r_max = 2xx(k-1) // s # r < s per Pocklington's criterion
49 r_min = 2xx(k-2) // s

50

51
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

while True:

rp = gmpy2.mpz(random.randrange(r_min, r_max))
r = gmpy2.bit_clear(rp, 0) # Even r

q=1r *xs +1

p=2%q+1

if (q % 6) == 5:

# Trial division
if gmpy2.gcd(q, primorial) == 1:
if gmpy2.gcd(p, primorial) == 1:
# Pocklington Primality test of q
x = pow(2, r, q)
if gmpy2.gcd(x-1, q) == 1:
if pow(x, s, @) == 1:
# Ramzy's corollary on p
if pow(2, p-1, p) == 1:
return p
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