
 - 1 -

CLASSIFICATION PUBLIC
REFERENCE P021520
CUSTOMER Federal Chancellery
LAST MODIFIED 2024-01-29

E-VOTING WEB APPLICATION 1.3.3.2

SECURITY AUDIT REPORT

DECEMBER 2023

RUE DU SABLON 4
1110 MORGES

SWITZERLAND

TÉL : +41 21 804 64 01

FAX : +41 21 804 64 02

WWW.SCRT.CH

INFO@SCRT.CH

P021520 | E-Voting Web Application 1.3.3.2 2

Client contact information

Federal Chancellery

SCRT SA contact information

SCRT SA
Rue du Sablon 4

1110 Morges
Suisse

Versions

DATE VERSION AUTHOR DESCRIPTION

2023-12-19 0.1 Initial document

2023-12-27 0.2 Added vulnerabilities

2024-01-09 0.3
Minor modifications and
conclusions

2024-01-11 1.0 Review

2024-01-23 1.1 Added remark for P021520-02

P021520 | E-Voting Web Application 1.3.3.2 3

TABLE OF CONTENTS

Executive summary .. 4
Results summary .. 4
High level impressions ... 4

Security dashboard .. 5
Scope .. 5
Risks by level .. 5
Risks by remediation .. 5
Global risk level .. 5

Status by attacker profile ... 5
Identified risks .. 6
Proposed remediation plan ... 6

Technical summary .. 7
Scope .. 7
Restrictions... 7
Results .. 7

Vulnerability summary ... 8
Additional remarks... 8

Detailed results .. 9
Vulnerabilities and exploitation ... 9

P021520-01 Weak Multi-Factor Authentication (MFA) ... 9

P021520-02 Insecure Web Messaging API use .. 11
Complements ... 14

Legend .. 14
SCRT Score.. 14
CVSS Score.. 14

Risk calculation... 15
Context ... 15

Attempted attacks ... 15
Attack scope ... 15
Search for known vulnerabilities (vulnerability scanning)... 15
Network protocol analysis ... 16
Weak and default passwords discovery .. 16
Web applications ... 17
Network sniffing... 17
Exploiting vulnerabilities .. 17

Additional attacks .. 18
Man-In-The-Middle .. 18
Social Engineering .. 18

P021520 | E-Voting Web Application 1.3.3.2 4

EXECUTIVE SUMMARY

RESULTS SUMMARY

SCRT was contracted by the Federal Chancellery to perform a security assessment of the E-
voting system developed by the Swiss Post. To this end, SCRT acted like real attackers and
searched for vulnerabilities and weaknesses within the application to determine the risk for
the voters and the secrecy and integrity of their votes.

During this assessment, two low-risk vulnerabilities were identified. The first risk emerges

from the use of a weak multi-factor authentication system. Specifically, an attacker obtaining
a voting card could potentially exploit the second authentication factor (the year of birth)

using open-source intelligence. This risk poses a threat to the confidentiality and integrity of
the voting process. If exploited, it could undermine the security and reliability of individual
votes.

The second risk is due to a recent update that inadvertently included a script file, increasing
the attack surface of the web application. While no immediate attack scenarios have been
identified, this expanded attack surface presents a risk, as it could be exploited in future
attacks when the codebase evolves.

Despite these risks, the E-voting system maintains a robust security posture. The overall risk

level remains low, thanks to the well-hardened application and infrastructure. As noted in the
additional remarks, SCRT recommends educating voters about basic cybersecurity principles,
with a particular focus on the risks associated with phishing and compromised devices.

HIGH LEVEL IMPRESSIONS

STRENGTHS

WAF configuration

Previous findings remediation

Parameter filtering and validation

Code and documentation quality

WEAKNESSES

Multi-Factor Authentication

Anti-phishing protection

P021520 | E-Voting Web Application 1.3.3.2 5

SECURITY DASHBOARD

SCOPE
Type White-box

Scope Web application

Positioning SCRT Offices

Schedule 2023-12-19 – 2023-12-27
Effort 12 days

Consultants 2

RISKS BY LEVEL

RISKS BY REMEDIATION

GLOBAL RISK LEVEL

ATTACKER PROFILES RISK LEVEL

Without voting card

With voting card

STATUS BY ATTACKER PROFILE

OBJECTIVES
WITHOUT VOTING

CARD
WITH VOTING CARD

Gain access to the internal network

Execute arbitrary commands

Vote confidentiality and integrity

 NOT COMPROMISED PARTIALLY COMPROMISED COMPROMISED

P021520 | E-Voting Web Application 1.3.3.2 6

IDENTIFIED RISKS

ID RISK LEVEL RISK DETAILS
RELATED

FLAWS
FIX

1 LOW
An attacker intercepting a voting card could obtain the
second factor (year of birth) using OSINT and
compromise the confidentiality and integrity of a vote.

P021520-01

2 LOW
Due to the involuntary inclusion of a script file, the
attack surface of the web application is expanded. It

could also cause unexpected behaviours.
P021520-02

 EASY MEDIUM HARD

PROPOSED REMEDIATION PLAN

ID ACTION DIFFICULTY
RELATED

RISKS

1 Use a stronger 2FA mechanism. MEDIUM 1

2
Remove the inclusion of the Web Worker JavaScript file in the
HTML page.

EASY 2

P021520 | E-Voting Web Application 1.3.3.2 7

TECHNICAL SUMMARY

SCOPE

The scope of the audit includes the e-voting web application (release 1.3.3.2), which was
reachable during the audit at the following address:

» https://it.evoting.ch/vote/#/legal-terms/D77A773516AB54473806FA0AEE5CEBFA

A hundred voting cards were also provided to the auditors.

As the penetration test was performed as a white-box audit on an open-source project, the
source code of the application was also available on GitLab:

» https://gitlab.com/swisspost-evoting

RESTRICTIONS

No social engineering or denial of service attacks were performed during this audit.

RESULTS

The audit started with an automated reconnaissance phase, during which the server was
scanned to identify and enumerate open services. This was followed by a web security scan
aimed at detecting typical vulnerability signatures. However, the E-Voting System’s perimeter

includes protective measures such as a Web Application Firewall (WAF) and anti -Denial of
Service (DOS) mechanisms, which prevented any further enumeration.

Then, the auditors proceeded with a manual security review of the open-source repositories.
This comprehensive review confirmed that the issues identified during the bug bounty
program have been properly addressed. However, a vulnerability was uncovered: a JavaScript
code, intended to be loaded as a Web Worker for performing cryptographic operations, was
also included in the main window of the web application. This allowed other windows to
interact with it. Although no practical attack was identified during the audit, the inclusion of
this script could lead to unexpected behaviours and increase the attack surface.

When manually testing the application, a second vulnerability was found: on the login page,

the Multi-Factor Authentication (MFA) was deemed too weak, as the birth year could be easily
deduced by searching the internet for the victim’s social media profiles or other public
records. Therefore, if an attacker steals or intercepts the envelope, he/she could compromise
the confidentiality or integrity of the vote.

Nonetheless, the overall security level is considered as high and regular assessments are
recommended to maintain this level. SCRT also advises conducting cybersecurity awareness
campaigns for voters for the reasons detailed in the additional remarks section.

https://it.evoting.ch/vote/#/legal-terms/D77A773516AB54473806FA0AEE5CEBFA
https://gitlab.com/swisspost-evoting

P021520 | E-Voting Web Application 1.3.3.2 8

VULNERABILITY SUMMARY

ID VULNERABILITY IMPACT PROBABILITY CVSS

P021520-01
Weak Multi-Factor Authentication

(MFA) ★★☆☆ ★☆☆☆ 3.2

P021520-02 Insecure Web Messaging API use ★☆☆☆ ★★☆☆ 3.4

Explanations regarding impact, exploitation and CVSS scores can be found in chapter Complements

ADDITIONAL REMARKS

As highlighted in the previous SCRT report from October 2022, also by some other researchers
(see https://andreaskuster.ch/blog/2023/CVD-EVoting-Swiss-Post/), the confidentiality of
votes can be compromised, or voters can be misled into following different instructions if they

fall victim to a phishing attack or have malicious software installed on their computer.

The E-Voting System has a robust mechanism in place to verify the correctness of the vote.
This is achieved using the Choice return codes and Vote Cast Code, which are unique to each
voter. Theoretically, this protection should be sufficient as voters are implicitly instructed to
verify these codes at the end of the voting process. However, the reality is that users often
rely more on on-screen instructions. Therefore, if a phishing website omits the instructions to
check the Choice return codes, an unsuspecting user might simply enter the Return Code,
thereby enabling the attacker to cast the vote on their behalf.

Typically, companies conduct cybersecurity awareness training for their employees to
safeguard against phishing attacks. In light of this, SCRT recommends that the Federal

Chancellery initiate cybersecurity awareness campaigns prior to the voting process and/or
include a cybersecurity notice within the voter envelope. Although not fool-proof, this
approach will help protect voters against phishing and other social engineering threats.

Following discussions with the Federal Chancellery, it appears that some cantons have already
updated their voting instructions to indicate that control codes should never be inserted into

the portal.

https://andreaskuster.ch/blog/2023/CVD-EVoting-Swiss-Post/

P021520 | E-Voting Web Application 1.3.3.2 9

DETAILED RESULTS

VULNERABILITIES AND EXPLOITATION

P021520-01 WEAK MULTI-FACTOR AUTHENTICATION (MFA)

SCRT CVSS

Impact ★★☆☆ Base 3.2

Probability ★☆☆☆ AV:P/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:N

PREREQUISITES COMPROMISED ASSETS

» Voting card
» OSINT

» Vote confidentiality
» Vote integrity

AFFECTED SYSTEMS

it.evoting.ch

DESCRIPTION

The e-voting application uses an initialisation code and the user's birth year as two factors for
authentication. The birth year, while personal, is not confidential information. It can be easily
guessed or obtained through various means, making it a weak second factor of authentication.

EXPLOITATION

The e-voting login page relies on two secrets: the initialisation code and the year of birth.

Although within the source code, there is also an option for entering the full date of birth, the
provided test environment uses only the year. The system allows for 5 attempts, providing an
attacker with multiple chances to guess the birth year correctly.

Error message indicating that 4 more attempts are possible.

P021520 | E-Voting Web Application 1.3.3.2 10

An attacker could use open-source intelligence (OSINT), such as social media searches on

platforms like Facebook or LinkedIn, to acquire the year of birth. This information, in
combination with a stolen voting letter containing the initialisation code, can be used to gain

unauthorised access to the e-voting system. On the other hand, obtaining the complete date
of birth is usually harder, as it cannot be easily deduced from education history listed on
platforms like LinkedIn or other facts.

Once these two pieces of information are obtained, the attacker can exploit the system in two
ways. They can repeatedly log in to the system until the voter reaches the validation step. This
allows the attacker to view the voter's choice, thereby compromising the confidentiality of
the vote. Alternatively, the attacker can cast a vote on behalf of the user. This compromises

the integrity of the vote, as the user's choice is replaced with the attackers. However, this
second form of attack can potentially be detected by the user when they attempt to cast their
vote.

POSSIBLE SOLUTIONS

It is recommended to replace the year of birth with the complete date of birth as a second

factor of authentication. This increases the difficulty for an attacker to guess or obtain this
information.

Additionally, using lesser-known information such as the OASI number or part of it could also
be an option. These changes would significantly enhance the security of the e-voting process
by reducing the chances of an attacker successfully exploiting this vulnerability.

REMARK

This risk was already considered by the Swiss Post in section 4.1.5 of its System specification

document. SCRT agrees with its conclusion that, even though the additional factor is weak, it
still enhances the authentication but recommends that the cantons choose the option to use
the full date of birth instead of only the year.

https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/documentation-1.5.11.0/System/System_Specification.pdf
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/documentation-1.5.11.0/System/System_Specification.pdf

P021520 | E-Voting Web Application 1.3.3.2 11

P021520-02 INSECURE WEB MESSAGING API USE

SCRT CVSS

Impact ★☆☆☆ Base 3.4

Probability ★★☆☆ AV:N/AC:H/PR:N/UI:R/S:C/C:N/I:L/A:N

PREREQUISITES COMPROMISED ASSETS

– » Increased attack surface
» Unexpected behaviours

AFFECTED SYSTEMS

it.evoting.ch

DESCRIPTION

The Web Messaging API allows documents to communicate between each other within a
browser. It can be used to circumvent some of the limitations imposed by the Same Origin

Policy which prevents documents on different origins from communicating together.

The idea of the API is that any document can setup a handler for message events which is
responsible for properly checking that incoming events are legitimate before taking any action
following the event.

For example, the following very simple code might be used to define a message handler in a

document which simply logs all incoming requests.

window.addEventListener("message", (event) => {

 console.log(event.data);
}, false);

Other documents can then interact with the document by using the
window.postMessage() function as shown below.

var popup = window.open(/* popup details */);
popup.postMessage("Hello world!","https://secure.example.net");

As indicated above, it is the responsibility of the event handler to perform any security checks
and input validation before handling the data, as by default any domain can interact with the

document and send arbitrary data through this API.

P021520 | E-Voting Web Application 1.3.3.2 12

EXPLOITATION

The e-voting application uses a Web Worker (crypto.ov-worker.js) to perform

cryptographic operations. However, since version 1.3.1.2, this script is also executed directly
in the main window, likely by mistake. This script uses the Web Messaging API to listen for
incoming messages without checking the origin.

/**

 * Handles a request from the api.
 * @param {MessageEvent} workerMessage, the message received from the worker.

 * @returns {Promise<unknown>} operation response.

 */

self.onmessage = function handleRequestFromApi(workerMessage) {

 const { operation, args } = workerMessage.data;

 let response;

 try {
 response = workerApi[operation].apply(workerApi, Array.isArray(args) ? args : [args]);

 } catch (error) {

 throw new Error(`Error calling the Worker API. [operation: "${operation}, error:${error}]`);

 }

 // Handling only the result and error (no progress or pending).

 // [...]
};

// [...]

const workerApi = {

 authenticateVoter: function(startVotingKey, extendedAuthenticationFactor, electionEventId, lang)
{

 return authenticateVoterPhase(startVotingKey, extendedAuthenticationFactor, electionEventId,

lang);

 },

 sendVote: function(selectedVotingOptions, voterWriteIns) {

 return sendVotePhase(selectedVotingOptions, voterWriteIns);

 },
 confirmVote: function(ballotCastingKey) {

 return confirmVotePhase(ballotCastingKey);

 },

 translateBallot: function(ballot, lang) {

 return translateBallot(ballot, lang);

 }
};

While this would not be an issue in the context of the Web Worker (as only the current window
can post messages to it), the script being loaded in the main window allows a different window
controlled by an attacker to send messages to it, triggering cryptographic operations. The
included insecure message handler in the script listens for incoming messages without
checking the origin. The handler includes operations such as authenticateVoter,
sendVote, confirmVote, and translateBallot.

Proof of Concept

An attacker could exploit this vulnerability to trigger operations such as sendVote. This code
opens the e-voting page in a new window and sends a message to it every second. The

message contains an operation sendVote with arguments:

P021520 | E-Voting Web Application 1.3.3.2 13

let win = window.open("https://it.evoting.ch/vote/#/legal-terms/D77A773516AB54473806FA0AEE5CEBFA");

setInterval(function() {

 let injectedMessage = {

 operation: "sendVote",

 args: [

 ["5","29"],

 []

]
 };

 win.postMessage(injectedMessage, "https://it.evoting.ch");
}, 1000);

Although the operation fails due to the session data (including private key and other
cryptographic state) being stored only in the worker, it can lead to unexpected behaviour and
increases the attack surface.

Remark

The Cross-Origin-Opener-Policy HTTP header prevents communication using the Web
Messaging API from a different origin meaning that this attack is only possible on browsers

that do not support this header. This is the case of Internet Explorer, which is listed as a
compatible browser for the e-voting platform.

POSSIBLE SOLUTIONS

Remove the inclusion of the worker script in the HTML page

This can be achieved by removing crypto.ov-worker from the scripts array in the e-

voting/voter-portal/angular.json file.

{

 "scripts": [

 {

 "input": "vendor/voting-client-js/dist/ov-api.js",

 "bundleName": "crypto.ov-api",

 "inject": true

 },

 {
 "input": "vendor/voting-client-js/dist/ov-worker.js",

 "bundleName": "crypto.ov-worker",

 "inject": true

 }

]
}

REFERENCES

» https://developer.mozilla.org/en-US/docs/Web/API/Channel_Messaging_API
» https://gitlab.com/swisspost-evoting/e-voting/e-voting/-

/commit/61f57a21ab3c424e95a49fbce3e000243b605b9f?page=3&view=parallel#d4
49b45e4bd1f2f19cc2d69e2984febdc948d724_151_154

» https://gitlab.com/swisspost-evoting/e-voting/e-voting/-/blob/e-voting-
1.3.3.2/voting-client-js/src/worker-api.js

P021520 | E-Voting Web Application 1.3.3.2 14

COMPLEMENTS

LEGEND

SCRT SCORE

For each vulnerability discovered and detailed in this report, SCRT provides a threat
assessment based on two indicators, an Impact and a Probability of exploitation.

IMPACT
IMPACT OF THE VULNERABILITY IN CASE OF SUCCESSFUL EXPLOITATION

("HOW BAD?")

☆☆☆☆ ★☆☆☆ ★★☆☆ ★★★☆ ★★★★

N/A Weak Medium High Critical

PROBABILITY
PROBABILITY THAT THE VULNERABILITY WILL BE DISCOVERED AND
EXPLOITED BY AN ATTACKER?

☆☆☆☆ ★☆☆☆ ★★☆☆ ★★★☆ ★★★★

N/A Low Medium High Very high

However, it is important to keep in mind that this assessment is solely based on the
information available to the engineers at the time of the audit. The engineers are not

necessarily aware of all the details regarding the vulnerable applications or systems.
Consequently, these ratings should always be reconsidered based on the context of the
information system as a whole.

CVSS SCORE

In addition to its own scoring system, SCRT also provides an evaluation based on the Common

Vulnerability Scoring System (CVSS), for each vulnerability.

As a reminder, CVSS is a vulnerability scoring system designed to provide an open and

standardised method for rating IT vulnerabilities. CVSS helps organisations prioritise and
coordinate a joint response to security vulnerabilities by communicating the base, temporal
and environmental properties of a vulnerability. More information about the CVSS scoring
system can be found here: https://www.first.org/cvss/user-guide

https://www.first.org/cvss/user-guide

P021520 | E-Voting Web Application 1.3.3.2 15

RISK CALCULATION

Each risk presented in this report is calculated as the product of an impact and a probability
of exploitation, as defined in the matrix below.

Overall Risk Severity

Impact

CRITICAL High High Critical Critical

HIGH Moderate Moderate High Critical

MODERATE Low Moderate Moderate High

LOW Low Low Moderate High

 LOW MODERATE HIGH CRITICAL

 Probability

SCRT provides an estimation of the effort required to fix each vulnerability and thus mitigate
their associated risk. It should be noted that this assessment is based on SCRT’s experience,
and as such might not fully reflect the context of the company or organisation.

CONTEXT

The context of each vulnerability is defined by its prerequisites and a list of compromised
assets. The prerequisites represent the conditions that are required for the exploitation of a
given vulnerability (e.g.: social engineering). Compromised assets represent the theoretical or
tangible result of its exploitation (e.g.: a user account).

ATTEMPTED ATTACKS

ATTACK SCOPE

The attacks performed by SCRT engineers during this audit cover the spectrum of attacks that
could be attempted by an actual attacker against the targeted information system. These

attacks thus cover "system" aspects (focused on machines and operating systems) as well as
"applicative" aspects (focused on applications running on top of the system).

As an example of this layered attack approach, consider a (poorly coded) web application
vulnerable to SQL injection, deployed on a correctly configured and patched web server. The
"system" components of this application (the OS, the web server, and the DB engine) do not
suffer from any known vulnerability. However, the "applicative" layer is flawed and thus
compromises the security of the whole system.

SEARCH FOR KNOWN VULNERABILITIES (VULNERABILITY SCANNING)

Software development is a complex task, especially when developing very large applications

such as operating systems, and often requires scores of developers in different teams working
autonomously. It is therefore not surprising that these applications contain many hidden bugs
and vulnerabilities (often due to development errors), even after they are put on the market.

P021520 | E-Voting Web Application 1.3.3.2 16

These flaws, when they are then discovered – by security researchers for example or by the

companies themselves – are often published to inform end-users and push developers to
correct them. Many flaws are discovered and published daily, which are generally followed by

the release of a new patch for the affected piece of software.

However, these publications do not only interest the developers trying to correct the flaws.
They are also very interesting for hackers as they reveal vulnerable pieces of code in the

software. Sometimes these flaws allow hackers to gain remote access on a machine. In parallel
with the release of new patches, specialised websites often release exploit code for these
same vulnerabilities. These are small programs which exploit the vulnerability and are often
very easy to use. This makes it very important to apply patches as quickly as possible. Not

doing so leaves the door open to malicious hackers who may exploit the vulnerabilities to gain
access to the affected machine.

System administrators must therefore take extreme care in making sure that all systems are
up to date and that the accessible services are not prone to known vulnerabilities. This is a
constantly ongoing job as a seemingly secure machine one day may suddenly become the
target of attacks the next after the publication of a new vulnerability affecting it.

To check whether any of the systems within the scope are vulnerable to known vulnerabilities,
SCRT engineers will research information based on the reported versions of software

discovered previously.

This is partly done with the help of automated scanners whose main goal is precisely the
discovery of known vulnerabilities. However, a vulnerability scan is only a small part of a
security audit and – on its own – cannot substitute a manual audit.

NETWORK PROTOCOL ANALYSIS

Multiple services use cleartext protocols to communicate. This means that data is not
encrypted before being sent on the network, sometimes even while sending credentials. In

this context it is often possible for an attacker to sniff network traffic in hope of discovering
cleartext user names and passwords.

This is also true for many web applications that do not use HTTPS, or do not implement it in a
secure way, even when they deal with sensitive information.

The level of security applied to the communications of a given service is therefore an
important part of its security and must also be subjected to analysis.

WEAK AND DEFAULT PASSWORDS DISCOVERY

Many services used on a network are protected by a password. These can be remote access
services such as SSH, FTP or private sections of a website, such as an administration panel.

In most cases, access to these secure areas will allow an attacker to gain access to sensitive or
confidential information and in some cases compromise the machine entirely. For this reason,

it is important that the passwords be secure enough to stop an attacker from gaining illicit

P021520 | E-Voting Web Application 1.3.3.2 17

access. Indeed, however secure an application may be, if a user or administrator decides to

use a weak password that can easily be guessed by an attacker, the security level cannot be
guaranteed. It is extremely important that chosen passwords are not part of any dictionary,

as they are often used by attackers in an automated way to gain access to a service.

To check the security level of the passwords, SCRT engineers test default and weak passwords
on any service requiring authentication.

WEB APPLICATIONS

There are many different ways web applications may be attacked. New types of attacks are

regularly discovered allowing attackers to circumvent older security mechanisms, therefore
forcing developers to constantly improve their code to prevent these new attacks.

There is however a regularly updated repository of the most commonly discovered and
exploited vulnerabilities in web applications: the Open Web Application Security Project's

(OWASP) TOP 10.

However, vulnerabilities are not limited to what is published in the OWASP Top 10 and SCRT
engineers are more than capable of identifying flaws that are not necessarily well documented
thanks to their experience gained from years of penetration testing.

NETWORK SNIFFING

Within a local network, such as a corporate network, several different services are provided
for the users, such as file sharing, FTP servers, remote administration and so on. Many of these

services use cleartext protocols to communicate, meaning that data transiting on the network
is not encrypted. In some cases, even the user's credentials are sent in this way.

It is therefore possible for a user located on this network to intercept the network traffic in
order to gather credentials or confidential information. This is usually done with the help of
an ARP poisoning attack, which allows an attacker to make a targeted client believe it is the
default gateway and make the gateway believe it is the end client, which then leads to the
attacker proxying all requests between the two.

Cleartext credentials can easily be found this way, but in cases where authentication details

are encrypted, the use of "cracking" tools comes in handy and will allow an attacker to break
any potentially weak passwords.

EXPLOITING VULNERABILITIES

One of the main differences between an intrusion test and a simple vulnerability scan, which
is too often referred to in the same terms, is the fact that an intrusion test will truly simulate
what an attacker may do when attacking a company.

Any vulnerability discovered during the audit is exploited by SCRT engineers as long as it is

actually exploitable and in line with the rules of engagement determined during the kick-off.

P021520 | E-Voting Web Application 1.3.3.2 18

This is the only way to know how dangerous the vulnerability truly is. It will allow one to know

what kind of information an attacker may access by exploiting the flaw and whether they may
leverage it to attack other systems.

ADDITIONAL ATTACKS

The following attacks are usually not performed during penetration tests as they would go
beyond the scope of the targeted application or system. However, SCRT deems it important
to mention them here because they could be a key element in the exploitation of certain
vulnerabilities.

 MAN-IN-THE-MIDDLE

A Man-In-The-Middle attack refers to a situation where the attacker is able to eavesdrop and
alter the data transmitted between a client and a server, without any of them being able to
notice the manipulation. An adversary can undertake such an attack only if they have access
to specific locations on the network. Effective attacks can be launched from the local network
(for example ARP Spoofing or DNS Poisoning). Additionally, any node of the network through

which the client-server communication flows can be used to undertake a Man-In-The-Middle
attack. ISPs as well as governments are therefore often considered as having the possibility
(legitimately or not) to undertake these kinds of attacks.

 SOCIAL ENGINEERING

Users are frequently one of the attacker's primary targets. Sophisticated attacks (e.g.:

phishing, phoning) are often developed in order to manipulate victims. When stated as a
prerequisite for a vulnerability, social engineering means that an attacker must have some

kind of interaction with their victim in order to trick them into performing an action desired
by the attacker, such as clicking on a link or opening an e-mail attachment.

