
 

 

Orange Restricted 

Federal Chancellery 

Examination of the Swiss 

Internet voting system 

Version: 1.0rev / Audit scope: Development process (2a) 

  

 

24 June 2025 



 

Federal Chancellery 

Examination of the Swiss Internet voting system 2 
 

Contact information 

Address Contact 

Orange Cyberdefense Switzerland SA 

Rue du Sablon 4 

1110 Morges 

Antonio Fontes 

Head of Advisory and Audit 

+41 21 802 64 01 

antonio.fontes@orangecyberdefense.com 

Contributors 

Name  Function Role 

Antonio Fontes  Head of Advisory and Audit, Orange Cyberdefense Switzerland Lead examiner 

Document history 

Version Date Author Change details 

0.1 05 June 2025 Antonio Fontes Working version 

1.0 20 June 2025 Antonio Fontes First release 

1.0rev 24 June 2025 Antonio Fontes Fixed typos 

Improved some observations texts 

Added bibliography 

Extended note #44 (SAMM) 

  



 

Federal Chancellery 

Examination of the Swiss Internet voting system 3 
 

 

Contents 

1 Context 5 

2 Methodology 7 

3 Examination criteria 9 

4 Findings 12 

5 Summary of results 15 

6 Summary of recommendations 19 

7 References 20 

8 Appendix 22 

 

 

  



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 4 
 

 

Management summary 

Context, scope and objective of the examination 

The objective of this examination was to assess to which extent Swiss Post’s e-voting 

software development process complies with a subset of requirements (audit scope 2a – 

Development process) set forth by the Federal Chancellery's ordinance on e-voting.  

In total, the examination covered 21 requirements. 

Methodology 

The examiners looked for evidence of effort to comply with said criteria by conducting 

interviews with Swiss Post personnel responsible for the development of the e-voting 

software, by analysing the related documentation (i.e., policies, procedures, 

specifications, reports, processes, etc.) and through interviews with selected personnel. 

Interviews were conducted both remotely (virtual sessions) and in-presence at Swiss 

Post’s e-voting software development centre. 

Results 

During this examination, Swiss Post was able to demonstrate a high level of compliance 

with the requirements of the ordinance on e-voting. One minor finding (missing 

documentation) and two opportunities for improvement (extend the test concept with fuzz 

testing, establish control feedback and optimization loops) were identified. Three 

corresponding recommendations were formulated. 

No major finding has been identified. 

Final note 

The examiners conclude this summary by thanking Swiss Post, and more particularly all 

the personnel that has been directly involved, for its cooperation and for the transparency 

demonstrated throughout the entire duration of the examination. 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 5 
 

 

1 Context 

1. Electronic voting (hereafter referred to as: “e-voting”) was introduced in Switzerland 

through multiple pilot schemes from 2004 onwards. A total of 15 cantons made e-

voting possible in over 300 trials, until early 2019. Two implementations were 

available: the system provided by the canton of Geneva and the system operated by 

the Swiss Post (hereafter also referred to as “the Post”), initially developed by Scytl. 

In June 2019, the canton of Geneva announced the withdrawal of its e-voting system 

with immediate effect. It was followed in July of the same year by the announcement 

by the Swiss Post of the withdrawal of its e-voting system from operation to focus on 

improving the solution. At that point, e-voting was no longer possible in Switzerland. 

2. In June 2019, the Swiss Federal Chancellery (hereafter also referred to as “Federal 

Chancellery”) was commissioned by the Federal Council to redesign a new trial phase, 

in collaboration with the cantons, using “e-voting systems, which are fully verifiable” 

[1]. This redesign of the trial phase focused on four objectives: 

a) Further development of the e-voting systems 

b) Effective controls and monitoring 

c) Increased transparency and trust 

d) Stronger connection with the scientific community 

3. A taskforce was set up to make proposals for the future of internet voting. To that 

end, the Federal Chancellery invited experts from academia and industry to engage 

in a broad dialogue on internet voting in Switzerland. After this dialog, the Federal 

Chancellery and the cantons published a final report on the redesign and relaunch of 

internet voting trials, with a catalogue of measures [2]. 

4. The Federal Council took note of the final report and commissioned the Federal 

Chancellery to amend the legal bases of the Confederation regarding e-voting. In April 

2021, the Federal Council opened a consultation procedure for the redesign of the e-

voting trials. The redesign includes both a partial revision of the Ordinance on Political 

Rights (PoRo) [3] and a complete revision of the Federal Chancellery Ordinance on 

Electronic Voting (“VEleS”, or “OEV”) [4]. The OEV specifies, among others, the 

requirements for authorising electronic voting, including the technical and 

administrative controls for approving an e-voting system. 

5. The Federal Chancellery issued an audit concept for the examination of Swiss internet 

voting systems defining the foundations for assessing the compliance of electronic 

voting systems with the draft OEV and its annex, as per chapter 26 of the annex of 

the draft OEV, and for obtaining recommendations for improvements [5]. 

6. In May 2022, the Federal Council enacted the partially revised Ordinance on Political 

Rights (PoRo) [6], which became applicable from July 1st 2022. The totally revised 

Federal Chancellery Ordinance on Electronic Voting (OEV) [7] came into force on the 

same date. 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 6 
 

 

7. Orange Cyberdefense Switzerland (“OCD CH”, formerly SCRT) was mandated by the 

Federal Chancellery to assess the compliance of Swiss Post’s e-voting software 

development process against the applicable requirements of the OEV (Scope 2a: 
Development process) [8]. The examination was subsequently followed by two follow-

up publications reporting on the progress of the recommendations [8], [9]. 

8. In November 2022, an updated version of the audit concept was issued by the Federal 

Chancellery [10]. 

9. In 2025, OCD CH was once again mandated by the Federal Chancellery to perform a 

new, full-scope audit of the e-voting system provided by the Post. On this occasion, 

the Federal Chancellery updated its audit concept to include additional requirements 

[11]. 

  



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 7 
 

 

2 Methodology 

2.1 Process 

10. The examination was based on OCD CH’s information systems audit methodology. 

The process specifies four-phases, as depicted in the figure below: 

 

 

Figure 1: Examination process 

2.2 Collection of evidence 

11. As a general principle, the examiners aimed at acquiring two types of evidence for 

each requirement.  

12. Types of evidence included: documents (e.g., policies, procedures, reports, etc.) and 

statements obtained from examinees during interviews. 

2.3 Findings 

13. The examiners raised a finding when a nonconformity or a significant opportunity for 

improvement was observed. 

2.4 Classification of findings 

14. Findings were classified based on their impact on requirements. The impact of each 

finding was assessed by the Federal Chancellery, as follows: 

◼ Minor nonconformity - The examiners’ observations reveal a partial or isolated 

failure to meet a requirement set by the Federal Chancellery. 

◼ Major nonconformity - The examiners’ observations reveal a failure to meet a 

requirement set by the Federal Chancellery. 

◼ Opportunity for improvement (OFI) - While no failure—full or partial—to meet a 

requirement set by the Federal Chancellery, the examiners have identified an 

opportunity to meaningfully strengthen the development process. 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 8 
 

 

2.5 Relevance of the assessment criteria 

15. The examiners raised an issue when the wording of a given requirement set in the 

OEV was perceived as unclear, or subject to interpretation, preventing the examiners 

from performing an objective assessment of the criterion.  

2.6 Assumptions 

2.6.1 Trustworthiness of statements 

16. The examiners assume that the examinees were honest and transparent when 

providing answers to the examiners’ assessment questions. The observation of the 

actual implementation of the OEV’s requirements within the e-voting system was 

limited to the demo made by the e-voting representatives of the Thurgau canton 

carried out to verify the accuracy of the examinees’ statements. 

2.6.2 Enforcement of security measures 

17. The examiners assume that the security measures described in the documents 

provided as evidence in the context of the present examination are implemented and 

are effective. No observation of the actual implementation of the OEV’s requirements 

within the e-voting system was carried out to verify the accuracy of the statements 

made in the security documents. 

2.6.3 Tabula rasa 

18. Although the examiners were aware of the results from a previous assessment, earlier 

observations were disregarded, and each requirement within the audit scope was 

evaluated anew. As a result, readers familiar with prior findings may encounter 

observations that differ from those in earlier reports. Such discrepancies may suggest 

a regression; however, they could also stem from (a) the examiners adopting a new 

or revised interpretation of the requirements or the evidence provided, or (b) the 

submission of new, potentially less satisfactory evidence. 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 9 
 

 

3 Examination criteria 

19. The examination focussed on assessing twenty Ordinance requirements selected by 

the Federal Chancellery as part of the scope 2a (development process. These include 

the following: 

3.1 Section 8 - Information and instructions 

Key Requirement 

8.13 Known flaws and the need for action associated with them are communicated transparently. 

Table 1 - E-voting requirements: Information and instructions 

3.2 Section 17 - System tests 

Key Requirement 

17.1 The functions relevant to the security of the system (security functions) are tested.  

The tests are documented with test plans and expected and actual test results. 

The test plan: 

◼ specifies the tests to be performed, 

◼ describes the scenarios for each test, including any dependencies on the results of other 

tests. 

The expected results must show the results that are expected if the test is successfully 

executed.  

The actual results must be consistent with expected results. 

17.2 An analysis must be made of the test coverage. This includes evidence that: 

◼ the tests defined in the test documentation match the functional specifications of the 

interfaces, 

◼ all interfaces have been fully tested. 

17.3 An analysis must be made of the depth of testing. This includes evidence that: 

◼ the tests defined in the test documentation match the subsystems related to security 

functions and modules that play a role in ensuring security, 

◼ all subsystems related to the security functions mentioned in the specifications have been 

tested, 

◼ all modules that play a role in ensuring security have been tested. 

Table 4 - E-voting requirements: System tests 

3.3 Subsection 24.1 - Development and maintenance of information 

systems 

Key Requirement 

24.1.1 A life cycle model is defined. The life cycle model: 

◼ is used for the development and maintenance of the software.  

◼ provides for the necessary controls during the development and maintenance of the 

software.  

◼ is documented. 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 10 
 

 

Key Requirement 

24.1.2 A list must be made of the development tools used and configuration options chosen for the 

use of each development tool. 

24.1.3 The documentation for the development tools includes: 

◼ a definition of the development tool, 

◼ a description of all conventions and directives used in the implementation of the 

development tool, 

◼ a clear description of the significance of all configuration options for using the 

development tool. 

24.1.4 The implementation standards to be applied must be specified. 

24.1.14 The software is provided with a unique identification. 

24.1.15 The configuration management documentation includes: 

◼ a description of how configuration items are identified, 

◼ a configuration management plan describing how the configuration management system 

will be used in the development of the software and the procedures that will be followed 

for the adoption of changes or new elements, 

◼ evidence that the procedures for adoption provide for adequate review of changes for all 

configuration items. 

24.1.16 The configuration management system:  

– uniquely identifies all configuration items, 

– provides automated measures to ensure that only authorised changes are made to 

configuration items, 

– supports the development of the software through automated procedures, 

– ensures that the person responsible for accepting the configuration item is not the same 

person who developed it, 

– identifies the configuration items that make up the security functions, 

– supports verification of all changes to the software using automated procedures, including 

logging of the author and the date and time of the change, 

– provides an automated method for identifying any configuration items that are affected by a 

change to a particular configuration item, 

– can identify the version of the source code on the basis of which the software is generated. 

24.1.17 All configuration items are inventoried in the configuration management  

system. 

24.1.18 The configuration management system is used in accordance with the configuration 

management plan. 

24.1.19 A configuration list is created that contains the following items: 

◼ the software, 

◼ evidence of the checks required to ensure security compliance, 

◼ the parts that make up the software, 

◼ the source code, 

◼ the commit history, 

◼ reports on security flaws and on the status of their correction. 

For each element relevant to security functions, the developer is named.  

Each element is uniquely identified. 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 11 
 

 

Key Requirement 

24.1.20 Software development security documentation includes:  

◼ a description of the physical, procedural, personnel, and other security measures 

necessary to protect and ensure the integrity of the design and implementation of the 

software in its development environment, 

◼ evidence that the security measures provide the necessary level of protection to preserve 

the integrity of the software. 

Table 2 - E-voting requirements: Development and maintenance of information systems 

3.4 Subsection 24.4 - Systematic correction of flaws 

Key Requirement 

24.4.1 Processes are defined for the correction of flaws. The processes include: 

◼ documentation of specific aspects, in particular with regard to the traceability of flaws for 

all versions of the software, and of the methods used to ensure that system users have 

information on flaws, corrections and possible corrective actions, 

◼ the obligation to describe the nature and impact of all security flaws, information on the 

status of work to find a solution and the corrective measures adopted, 

◼ a description of how system users can make reports and enquiries about suspected flaws 

in the software known to the software developers, 

◼ a procedure requiring a timely response and automatic dispatch of security flaw reports 

and appropriate corrective actions to registered system users who may be affected by the 

flaw. 

24.4.2 A process is defined for handling reported flaws: 

◼ This process ensures that all reported and confirmed flaws are corrected and that the 

procedures for correction are communicated to system users. 

◼ It provides for arrangements to ensure that the correction of security flaws does not give 

rise to new security flaws. 

Table 3 - E-voting requirements: Systematic correction of flaws 

3.5 Subsection 24.5 - Quality assurance 

Key Requirement 

24.5 Regular and objective checks are carried out to ensure that the processes carried out and the 

associated work products comply with the description of the processes, standards and 

procedures to be implemented. Deviations are followed up until they are corrected. 

Table 4 - E-voting requirements: Quality assurance 

3.6 Subsection 25.13 - Quality of the source code and 

documentation 

Key Requirement 

25.13.3 The integration tests cover all modules. 

25.13.4 The software tests cover all modules. 

Table 5 - E-voting requirements: Quality of the source code and documentation 

  



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 12 
 

 

4 Findings 

4.1 F01 Insufficient documentation of security measures 

Key F01 

Title Insufficient documentation of security measures 

Class Major – Minor – Improvement 

Requirement(s) 24.1.20 OEV - Software development security documentation includes:  

◼ a description of the physical, procedural, personnel, and other security 

measures necessary to protect and ensure the integrity of the design and 

implementation of the software in its development environment, 

evidence that the security measures provide the necessary level of protection to 

preserve the integrity of the software. 

Rationale Although the examiners observed that a broad and comprehensive set of security 

measures had been implemented to safeguard the e-voting development 

environment against identified threats, they received limited documented 

evidence concerning the physical, organizational, and personnel controls in place. 

Such evidence would typically inform observers of the measures put in place to 

secure the development environment from unauthorized access, in particular: 

◼ Measures deployed to protect Swiss Post e-voting development facilities 

from unauthorized physical access; 

◼ Measures deployed to protect the e-voting development infrastructure from 

unauthorized logical or physical access; 

◼ Measures to protect developer workstations and other compute / store 

assets from unauthorized logical or physical access, including immobilized 

and mobile equipment used to develop the e-voting software; 

◼ Personnel and organizational measures to protect e-voting software from 

fraudulent access or tampering, errors, or distractions (e.g., screening, 

onboarding, regular/continuous review, and termination procedures). 

Recommendation(s) Consider expanding the security whitepaper—or an equivalent supporting 

document—to include detailed information on the additional classes of measures 

(organizational, physical, personnel) implemented to protect the e-voting 

software’s development environment. 

Additional remarks - 

Table 6 – Finding F01 Insufficient documentation of security measures 

  



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 13 
 

 

4.2 F02 Opportunity for improved testing strategy (fuzz testing) 

Key F02 

Title Opportunity for improved testing strategy (fuzz testing) 

Class Major – Minor – Improvement 

Requirement(s) 17.2 OEV - An analysis must be made of the test coverage. This includes 

evidence that: 

◼ the tests defined in the test documentation match the functional 

specifications of the interfaces, 

all interfaces have been fully tested. 

Rationale The examiners observed that fuzz testing1 is not performed on interfaces, 

including those not directly exposed to voters. 

Fuzzing is a test method explicitly designed to observe a system’s behaviour 

under random and/or unexpected situations. These may lead to the discovery of 

defects or undesired states that typically would not be identified through the 

execution of the documented test cases. 

Fuzzing may also be particularly useful when assessing interfaces whose 

operation was not (or could not be) verified through formal methods bur rather 

tested using methods that provide partial visibility (e.g., runtime security testing, 

penetration testing, bug bounties, etc.). 

Recommendation(s) Consider expanding the test strategy to incorporate fuzz testing, ensuring that at 

a minimum, the external interfaces of all components are subjected to fuzzing. 

Additional remarks This finding and associated recommendation were reported in a previous 

examination [8]. 

Table 7 – Finding F02 Opportunity for improved testing strategy (fuzz testing) 

  

 

 

1 « Fuzzing or fuzz testing is an automated software testing technique that involves providing invalid, 

unexpected, or random data as inputs to a computer program » (Wikipedia, 2025) 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 14 
 

 

4.3 F03 Opportunity for establishing control feedback and 

optimization loops 

Key F03 

Title Opportunity for establishing control feedback and optimization loops 

Class Major – Minor – Improvement 

Requirement(s) 24.5 OEV - Regular and objective checks are carried out to ensure that the 

processes carried out and the associated work products comply with the 

description of the processes, standards and procedures to be implemented.  

Deviations are followed up until they are corrected. 

Rationale Although the examiners observed the use of processes and tools intended to 

detect defects, errors, and vulnerabilities in work items, these mechanisms do not 

yet appear to be sufficiently monitored to ensure proper execution or automation. 

For example, key indicators—such as execution accuracy, coverage ratios, 

frequency ratios, failure rates, and regression metrics—are not systematically 

tracked. 

This lack of oversight may impede the timely identification of weaknesses in the 

processes and tools, potentially diminishing operational efficiency. 

However, the associated risk is partially mitigated by the test concept, which 

employs a variety of testing tools and methods across the same set of artefacts at 

different stages of development (e.g., static analysis, runtime testing, penetration 

testing). This layered approach provides an implicit level of quality control over 

the tools and methods in use. 

Recommendation(s) Consider establishing a monitoring framework that provides clear visibility into the 

performance and operation of the controls and measures implemented to meet 

the Chancellery’s e-voting requirements. 

This framework could be developed in two stages: 

◼ An initial phase focused on monitoring the accurate execution of controls and 

measures, allowing for quantitative assessment and the identification of 

deviations from standard performance. 

◼ When relevant, a subsequent phase dedicated to analyzing both performance 

and its fluctuations, facilitating root cause analysis and the development of 

targeted corrective actions. 

Additional remarks - 

Table 8 – Finding F03 Opportunity for establishing control feedback and optimization loops 

 

 

 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 15 
 

 

5 Summary of results 

20. The tables below present a summary of the findings observed for each Federal 

Ordinance requirement covered by the assessment. For each requirement, the 

number of major nonconformities, minor nonconformities, and opportunities for 

improvement (OFIs) is indicated. 

Section 8 (information and instructions) 

Key Requirement Major Minor OFI 

8.13 Known flaws and the need for action associated with them 

are communicated transparently. 

- - - 

Table 9 - Summary of results (section 8) 

Section 17 (system testing) 

Key Requirement Major Minor OFI 

17.1 The functions relevant to the security of the system 

(security functions) are tested.  

The tests are documented with test plans and expected 

and actual test results. 

The test plan: 

◼ specifies the tests to be performed, 

◼ describes the scenarios for each test, including any 

dependencies on the results of other tests. 

The expected results must show the results that are 

expected if the test is successfully executed.  

The actual results must be consistent with expected 

results. 

- - - 

17.2 An analysis must be made of the test coverage. This 

includes evidence that: 

◼ the tests defined in the test documentation match the 

functional specifications of the interfaces, 

all interfaces have been fully tested. 

- - 1 

17.3 An analysis must be made of the depth of testing. This 

includes evidence that: 

◼ the tests defined in the test documentation match the 

subsystems related to security functions and modules 

that play a role in ensuring security, 

◼ all subsystems related to the security functions 

mentioned in the specifications have been tested, 

all modules that play a role in ensuring security have been 

tested. 

- - - 

Table 10 - Summary of results (section 17) 

 

 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 16 
 

 

Section 24.1 (development and maintenance) 

Key Requirement Major Minor OFI 

24.1.1 A life cycle model is defined. The life cycle model: 

◼ is used for the development and maintenance of the 

software.  

◼ provides for the necessary controls during the 

development and maintenance of the software.  

is documented. 

- - - 

24.1.2 A list must be made of the development tools used and 

configuration options chosen for the use of each 

development tool. 

- - - 

24.1.3 The documentation for the development tools includes: 

◼ a definition of the development tool, 

◼ a description of all conventions and directives used in 

the implementation of the development tool, 

a clear description of the significance of all configuration 

options for using the development tool. 

- - - 

24.1.4 The implementation standards to be applied must be 

specified. 

- - - 

24.1.14 The software is provided with a unique identification. - - - 

24.1.15 The configuration management documentation includes: 

◼ a description of how configuration items are identified, 

◼ a configuration management plan describing how the 

configuration management system will be used in the 

development of the software and the procedures that 

will be followed for the adoption of changes or new 

elements, 

evidence that the procedures for adoption provide for 

adequate review of changes for all configuration items. 

- - - 

24.1.16 The configuration management system:  

– uniquely identifies all configuration items, 

– provides automated measures to ensure that only 

authorised changes are made to configuration items, 

– supports the development of the software through 

automated procedures, 

– ensures that the person responsible for accepting the 

configuration item is not the same person who developed it, 

– identifies the configuration items that make up the security 

functions, 

– supports verification of all changes to the software using 

automated procedures, including logging of the author and 

the date and time of the change, 

– provides an automated method for identifying any 

configuration items that are affected by a change to a 

particular configuration item, 

- - - 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 17 
 

 

 

Table 11 - Summary of results (subsection 24.1) 

Section 24.4 (systematic correction of flaws) 

Key Requirement Major Minor OFI 

24.4.1 Processes are defined for the correction of flaws. The 

processes include: 

◼ documentation of specific aspects, in particular with 

regard to the traceability of flaws for all versions of the 

software, and of the methods used to ensure that 

system users have information on flaws, corrections and 

possible corrective actions, 

◼ the obligation to describe the nature and impact of all 

security flaws, information on the status of work to find 

a solution and the corrective measures adopted, 

◼ a description of how system users can make reports 

and enquiries about suspected flaws in the software 

known to the software developers, 

- - - 

Key Requirement Major Minor OFI 

– can identify the version of the source code on the basis of 

which the software is generated. 

24.1.17 All configuration items are inventoried in the configuration 

management  

system. 

- - - 

24.1.18 The configuration management system is used in 

accordance with the configuration management plan. 

- - - 

24.1.19 A configuration list is created that contains the following 

items: 

◼ the software, 

◼ evidence of the checks required to ensure security 

compliance, 

◼ the parts that make up the software, 

◼ the source code, 

◼ the commit history, 

◼ reports on security flaws and on the status of their 

correction. 

For each element relevant to security functions, the 

developer is named.  

Each element is uniquely identified. 

- - - 

24.1.20 Software development security documentation includes:  

◼ a description of the physical, procedural, personnel, and 

other security measures necessary to protect and 

ensure the integrity of the design and implementation of 

the software in its development environment, 

evidence that the security measures provide the necessary 

level of protection to preserve the integrity of the software. 

- 1 - 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 18 
 

 

Key Requirement Major Minor OFI 

a procedure requiring a timely response and automatic 

dispatch of security flaw reports and appropriate corrective 

actions to registered system users who may be affected by 

the flaw. 

24.4.2 A process is defined for handling reported flaws: 

◼ This process ensures that all reported and confirmed 

flaws are corrected and that the procedures for 

correction are communicated to system users. 

It provides for arrangements to ensure that the correction of 

security flaws does not give rise to new security flaws. 

- - - 

Table 12 - Summary of results (subsection 24.4) 

Section 24.5 (quality assurance) 

Key Requirement Major Minor OFI 

24.5 Regular and objective checks are carried out to ensure that 

the processes carried out and the associated work products 

comply with the description of the processes, standards and 

procedures to be implemented.  

Deviations are followed up until they are corrected. 

- - 1 

Table 13 - Summary of results (subsection 24.5) 

Section 25.13 (quality of the source code and documentation) 

Key Requirement Major Minor OFI 

25.13.3 The integration tests cover all modules. - - - 

25.13.4 The software tests cover all modules. - - - 

Table 14 - Summary of results (subsection 25.13) 

 

 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 19 
 

 

6 Summary of recommendations 

21. The following table summarizes the recommendations based on the findings. For each 

recommendation, the table lists its identifier, the associated finding, the applicable 

OEV requirement, and the classification of the finding (minor, major, or OFI). 

Key Finding OEV req. Class Recommendation 

R01 F01 24.1.20 Minor Consider expanding the security whitepaper—or an 

equivalent supporting document—to include detailed 

information on the additional classes of measures 

(organizational, physical, personnel) implemented to protect 

the e-voting software’s development environment. 

R02 F02 17.2 OFI Consider expanding the test strategy to incorporate fuzz 

testing, ensuring that at a minimum, the external interfaces 

of all components are subjected to fuzzing. 

R03 F03 24.5 OFI Consider establishing a monitoring framework that provides 

clear visibility into the performance and operation of the 

controls and measures implemented to meet the 

Chancellery’s e-voting requirements. 

This framework could be developed in two stages: 

◼ An initial phase focused on monitoring the accurate 

execution of controls and measures, allowing for 

quantitative assessment and the identification of 

deviations from standard performance. 

◼ When relevant, a subsequent phase dedicated to 

analyzing both performance and its fluctuations, 

facilitating root cause analysis and the development of 

targeted corrective actions. 

Table 15 - Summary of recommendations 

 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 20 
 

 

7 References 

[1] Administration numérique suisse, “Swiss citizens should be able to vote 

electronically.” Accessed: Jun. 24, 2025. [Online]. Available: https://www.digital-

public-services-switzerland.ch/en/egovernment-implementation-plan/redesigning-

evoting 

[2] Swiss Federal Chancellery, Political Rights Section, “Redesign and relaunch of 

trials - Final report of the Steering Committee Vote électronique (SC VE).” Nov. 30, 

2020. Accessed: Dec. 06, 2021. [Online]. Available: 

https://www.bk.admin.ch/dam/bk/en/dokumente/pore/Final%20report%20SC%20

VE_November%202020.pdf.download.pdf/Final%20report%20SC%20VE_Novem

ber%202020.pdf 

[3] Swiss Federal Chancellery, Political Rights Section, “Partial revision of the 

Ordinance on Political Rights and total revision of the Federal Chancellery 

Ordinance on Electronic Voting (Redesign of Trials).” Apr. 28, 2021. Accessed: 

Dec. 06, 2021. [Online]. Available: 

https://www.bk.admin.ch/dam/bk/en/dokumente/pore/Explanatory%20report%20f

or%20consultation%202021.pdf.download.pdf/Explanatory%20report%20for%20

consultation%202021.pdf 

[4] Swiss Federal Chancellery, Political Rights Section, “Federal Chancellery 

Ordinance on electronic voting (OEV).” Apr. 28, 2021. Accessed: Dec. 06, 2021. 

[Online]. Available: 

https://www.bk.admin.ch/dam/bk/en/dokumente/pore/Explanatory%20report%20f

or%20consultation%202021.pdf.download.pdf/Explanatory%20report%20for%20

consultation%202021.pdf 

[5] Swiss Federal Chancellery (FCh) - Political Rights section, “Audit concept for 

examining Swiss Internet voting systems - v1.3.” May 18, 2021. 

[6] Swiss Federal Chancellery, Political Rights Section, “Partial revision of the 

Ordinance on Political Rights and total revision of the Federal Chancellery 

Ordinance on Electronic Voting (Redesign of Trials).” May 25, 2022. Accessed: 

Dec. 06, 2021. [Online]. Available: 

https://www.newsd.admin.ch/newsd/message/attachments/71705.pdf 

[7] Swiss Federal Chancellery, “Federal Chancellery ordinance on electronic voting 

(OEV).” May 25, 2022. [Online]. Available: 

https://www.fedlex.admin.ch/eli/cc/2022/336/en 

[8] A. Fontes, “Examination of the Swiss Internet voting system - Audit scope 2a - 

Development processes - Follow-up Audit (round 2).” Nov. 02, 2022. [Online]. 

Available: https://www.bk.admin.ch/bk/en/home/politische-rechte/e-

voting/ueberpruefung_systeme.html 

[9] A. Fontes, “Examination of the Swiss Internet voting system - Audit scope 2a - 

Development processes (round 3, follow-up).” Aug. 04, 2023. [Online]. Available: 

https://www.bk.admin.ch/dam/bk/en/dokumente/pore/E_Voting/Examination_repo

rts_August2023/Scope%202a%20Final%20Report%20SCRT%2004.08.2023.pdf.

download.pdf/Scope%202a%20Final%20Report%20SCRT%2004.08.2023.pdf 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 21 
 

 

[10] Swiss Federal Chancellery (FCh) - Political Rights section, “Audit concept for 

examining Swiss Internet voting systems - v1.5.” Sep. 15, 2022. [Online]. Available: 

File reference: 431.0-2/5/12/16 

[11] Swiss Federal Chancellery (FCh) - Political Rights section, “Audit concept for 

examining Swiss Internet voting systems - v1.6.” Feb. 07, 2025. [Online]. Available: 

File reference: 431.0-2/15/4/7 

[12] OWASP, “OWASP Web security testing guide ver.4.2.” 2020. [Online]. Available: 

https://owasp.org/www-project-web-security-testing-guide/v42/ 

[13] the ZAP dev team, ZAP - Zed Attack Proxy. (Mar. 25, 2025). Checkmarx. [Online]. 

Available: https://www.zaproxy.org/ 

[14] OWASP, “Software assurance maturity model (SAMM),” OWASP SAMM. 

Accessed: Dec. 08, 2021. [Online]. Available: https://owaspsamm.org/ 

[15] “SAMM Assessment.” Accessed: Jun. 24, 2025. [Online]. Available: 

https://owaspsamm.org/assessment/ 

[16] Microsoft security, “Secure the developer environment for Zero Trust.” Feb. 26, 

2025. [Online]. Available: https://learn.microsoft.com/en-us/security/zero-

trust/develop/secure-dev-environment-zero-trust 

  

 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 22 
 

 

8 Appendix 

8.1 Index of tables 

Table 1 - E-voting requirements: Information and instructions ........................................................................ 9 
Table 2 - E-voting requirements: Development and maintenance of information systems ............................ 11 
Table 3 - E-voting requirements: Systematic correction of flaws .................................................................. 11 
Table 4 - E-voting requirements: Quality assurance ...................................................................................... 11 
Table 5 - E-voting requirements: Quality of the source code and documentation ........................................ 11 
Table 6 – Finding F01 Insufficient documentation of security measures ....................................................... 12 
Table 7 – Finding F02 Opportunity for improved testing strategy (fuzz testing) ............................................. 13 
Table 8 – Finding F03 Opportunity for establishing control feedback and optimization loops ...................... 14 
Table 9 - Summary of results (section 8)........................................................................................................ 15 
Table 10 - Summary of results (section 17) .................................................................................................... 15 
Table 11 - Summary of results (subsection 24.1) ........................................................................................... 17 
Table 12 - Summary of results (subsection 24.4) ........................................................................................... 18 
Table 13 - Summary of results (subsection 24.5) ........................................................................................... 18 
Table 14 - Summary of results (subsection 25.13) ......................................................................................... 18 
Table 15 - Summary of recommendations ..................................................................................................... 19 
Table 16 - Evidence catalogue ....................................................................................................................... 23 
Table 17 – Interview log ................................................................................................................................. 24 
 

  



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 23 
 

 

8.2 Evidence catalogue 

22. The table below summarises the evidence documented and made available by Swiss 

Post to the examiners: 

OEV Key Evidence proposed 

8.13 Bug bounty platform procedures 

E-voting security whitepaper 

Gitlab issues page 

Public examination rules 

17.1, 17.2, 17.3 Test concept 

Test concept - implementation  

Test plan and scenarios 

Test results archive 

Xray reports  

Xray scan reports 

24.1.1,24.1.2, 24.1.3, 24.1.4, 24.1.14, 

24.1.15, 24.1.16, 24.1.17, 24.1.18,  

24.1.19 

Secure Software Development Process 

Secure Software Development Process - internal details 

24.1.20 Security Whitepaper 

24.4.1, 24.4.2 About 

Contributing 

Security Whitepaper 

SPOC community guidelines 

24.5 E-voting security whitepaper  

OWASP SAMM assessment report 

25.13.3, 25.13.4 Secure Software - Development Process  

Test concept 

Unit test reports 

Table 16 - Evidence catalogue 

  



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 24 
 

 

8.3 Interview log 

23. The table below summarises the interviews conducted as part of the assessment: 

Date Location Topic(s) / objective(s) 

2025-04-30 Virtual Development process 

Roles and responsibilities 

2025-04-30 Virtual Risk management 

Threat modeling 

2025-04-30 Virtual Test concept I (test strategy) 

2025-04-30 Virtual Software development governance (OWASP SAMM review) 

2025-05-07 Virtual Trusted build and development 

2025-05-07 Virtual Test concept II (test plan and methods) 

2025-05-14 On-site Test concept III (business logic testing, security testing) 

2025-05-14 On-site Development process tooling and documentation 

2025-05-14 On-site Test concept IV (evidence of testing) 

2025-05-14 On-site Third-party dependencies 

2025-05-14 On-site Final debriefing 

Table 17 – Interview log 

  



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 25 
 

 

8.4 Examiners observations 

8.4.1 Section 8 (information and instructions) 

24. Flaws identified internally or reported through designated public channels are 

disclosed on the e-voting Gitlab platform.  

25. The platform offers a ticketing system (issues) that enables the public to track Swiss 

Post’s responses to findings or vulnerabilities affecting the e-voting system. Publicly 

available information typically includes the impact assessment, the decision made 

(e.g., mitigation or acceptance), and the actions taken by Swiss Post’s e-voting 

development team. 

26. Swiss Post’s internal security team also conducts independent security research on 

its own products. Vulnerabilities discovered through these efforts are expected to be 

published on the Gitlab platform, ensuring transparency regardless of whether the 

issue was found internally or reported externally. 

27. In addition to Gitlab’s issue tracking, vulnerabilities can be reported through Swiss 

Post’s proprietary messaging platform (IncaMail) or via an online form. It is important 

to note that Swiss Post acts as the primary recipient for several of these reporting 

channels. This arrangement may raise concerns regarding the potential circumvention 

of the third-party oversight initially envisioned by the Swiss Chancellery (i.e., the 

observers).  

28. There exists a scenario in which Swiss Post could withhold or delay the disclosure of 

newly reported vulnerabilities, particularly during periods of heightened operational 

pressure—such as when ballots are underway, when resources are temporarily 

constrained, or when significant political decisions are pending. 

8.4.2 Section 17 (system testing) 

29. The examiners are required to assess the notion of a function’s relevance to security 

in this context. In the context of the audit, function relevance to the security of the 

system was qualified in two cases:  

◼ Functions directly used as part of the e-voting protocol (e.g., cryptographic 

functions carrying the burden of secrecy of the vote), 

◼ Functions, whose incorrect design or implementation could be abused to 

compromise the security of the e-voting platform (e.g., a computation method in 

which a malformed or forged input could trigger a resource exhaustion). 

30. The examiners note that the distinction between the two concepts (security functions 

vs. secure functions) remains uninformed in the concept. Security functions, which 

compose the e-voting protocol, are identified as such and thus benefit from accrued 

scrutiny and are subject to a multilayer verification process. This verification process 

includes:  

◼ Review of the design of changes proposals, 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 26 
 

 

◼ Explicit involvement of security and cryptography specialists both from the Swiss 

Post's e-voting development team but also third-party experts, 

◼ Review of the implementation (through the e-voting examination program, among 

others), 

◼ Public review (the design and implementation are subject to voluntary reviews, by 

experts worldwide). 

31. The second category of functions—those whose incorrect or inadequate design or 

implementation could be exploited by threat agents to compromise the e-voting 

platform—has not yet been formally identified. As a result, these functions are not 

explicitly subjected to targeted testing. The absence of a formal identification process 

for such functions may undermine the effectiveness of the test plan, particularly in 

situations where comprehensive coverage is unattainable or incomplete. 

Nevertheless, this vulnerability is largely mitigated by the overall e-voting test strategy, 

which incorporates a "business logic test" (BLT) as part of the verification process for 

new platform releases. The BLT phase involves executing the test protocol specified 

in the OWASP Web Testing Guide [12], which, among other measures, mandates 

testing all input interfaces against malformed or malicious inputs. 

32. This process (BLT) is, however, fully externalized to such an extent that the e-voting 

ultimately trusts the tester (a third-party information security services provider) and 

does not track whether a) the test plan was fully executed and/or whether potential 

regressions are observed, b) the content of the test plan. It should be noted that the 

tester includes information on both successful tests and failed tests, thus facilitating 

the tracking of potential regressions. 

33. Regarding the test plan itself, the examination team notes and confirms the 

documentation of the test plan, of the test scenarios and of the testing procedures, 

including documented tests specifications, dependencies towards other tests and 

expected results of the tests. Reports of successful testing could be examined. 

34. Tests are organized and documented per voting component, which facilitates the 

verification of the OEV requirements 17.2 and 17.3.  

35. Tests can be listed per module/component and are inventoried. All existing modules 

appear in that list. 

36. Test dependencies are not shown in the test plan but may be unnecessary due to the 

adopted strategy: 

◼ No tests should fail  

◼ Test cases aim at performing a complete procedure. 

37. Tests can be listed per module/component and are inventoried. All existing modules 

appear in that list. 

38. The test strategy involves, among others: 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 27 
 

 

◼ Unit testing: publicly available test plan, highly reproducible and comparable across 

runs, current coverage above 85% for the entire code base, regressions can be 

identified thanks to complete traceability of test runs and their author. 

◼ Functional testing: current coverage is reportedly complete (all functional 

requirements are subject to functional testing) but the effectiveness of the 

implementation remains untracked and thus unmeasurable. By extension, tests 

delegated to the BLT process (business-logic testing) remain unidentified. 

39. The e-voting development team uses various tools and methods at all major phases 

of its systems development lifecycle to routinely review its work products (i.e., source 

code, pipeline instructions, infrastructure code) and test them for defects, errors, and 

security vulnerabilities. The following testing methods and tools are used by the e-

voting development team prior to each release of the e-voting software: 

◼ Checking for known publicly reported vulnerabilities (CVEs) in third parties and 

libraries embedded in the product,  

◼ Unit testing for all interfaces and methods, 

◼ Scanning the source code for known defects, errors and vulnerabilities (static 

testing) 

◼ Conducting end-to-end scenario testing using various methods such as smoke 

testing, regression testing and business logic testing, 

◼ Scanning the runtime and release artifacts for known errors and vulnerabilities 

(runtime / dynamic testing), 

◼ Conducting a security assessment based on the OWASP’s web application security 

testing guide, 

◼ Conducting a penetration test upon each release. 

40. All subsystems are subject to testing (verbal + visual confirmation in test plan 

acquired). 

41. Depth of testing appears to cover smoke testing (execution of rapid pass/fail 

scenarios that tend to maximize the number of components and interfaces tested 

within the smallest unit of testing), unit testing (unitary instruction tests) and functional 

tests. Function testing approach implements a positive testing model ("verify that this 

works or that this failure mechanism works correctly").  

42. Abuse cases are not formalized per-se as part of the regular test plan but rather some 

plans can be considered abuse cases in rare occasions (“ensure it fails”), but they are 

covered through the BLT. Fuzzing and monkey tests are not performed. 

43. It was verified that subsystems are tested (request to provide test artifacts on 

randomly selected components) but there was no central view that provided the 

information (maturity issue?). Information is available but requires manual drill or pull. 

8.4.3 24.1 (development and maintenance) 

44. On the development process, it is observed: 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 28 
 

 

◼ Dev/architect role-based training: not automatically triggered for newcomers. All 

current members of the dev team underwent training. Risk is mitigated by the 

(currently) high stability of the team (employee attrition close to 0). 

◼ Security requirements analysis: performed, mainly through the Chancellery’s 

Ordinance on e-voting [7] 

◼ Threat modelling: performed regularly and on all security-relevant work items 

requests. However, the trigger that effectively processes the execution of a threat 

modelling session remains informal. Maturity is elevated and can be observed 

through the use of reference methods, the use of purpose-built extensions (e-voting 

specific top-level threats) to increase threat findability, models are auditable and 

traced). 

◼ Coding convention: a guide (hitchhiker’s’ handbook) is available to the development 

team. The team knows about the location of the guide. 

◼ Security API: well established concept within the e-voting protocol but remains 

informal outside (e.g., voter portal).  

◼ Static analysis: all source code is subject to code scanning prior to release. 

Evidence of scanning provided, with auditable results for past tests. 

◼ Peer-review: submission of new code, infrastructure code, pipeline code, and other 

artifacts requires approval from a third-party senior developer (configured in 

Bitbucket). 

◼ Depdendency scanning / composition analysis: all libraries and third-party 

components are systematically scanned for known vulnerabilities (CVEs) both prior 

to release and on a continuous basis thereafter, as well as during the build process, 

using a commercial third-party tool. This tool automatically generates new work 

items and creates upgrade tasks within the configuration management platform 

employed by the e-voting software team. Scan reports are maintained as evidence. 

◼ Dependency scanning: if a vulnerability is flagged during live operations—such as 

while a ballot is in progress—a predefined procedure is initiated. The vulnerability 

undergoes assessment to determine its reproducibility, impact and the likelihood of 

exploitation. Based on the evaluation, the response may involve a complete 

shutdown of the e-voting platform or the planning and deployment of a patch, 

depending on the severity and risk level identified. 

◼ Dependency vetting: the integration of third-party components is governed by an 

architecture board approval process, which prohibits direct embedding of external 

libraries via developer workstations. To initiate approval, a formal dependency 

assessment form must be completed and submitted in accordance with a 

documented, standardized procedure. This process requires the collection of key 

information, including the number of previously identified CVEs, the package’s 

historical activity, the developers’ historical activity, and the applicable licensing 

schemes. Additionally, a threat model must be produced to ensure that all relevant 

risks associated with the component are identified and can be monitored over time. 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 29 
 

 

Authorizations are time-limited; continued access to a library necessitates periodic 

updates to the associated security information. 

◼ Dependency vetting: a notable push toward re-importing third-party components 

into the internal codebase, with the aim of reducing reliance on external 

dependencies, is observed. This internalization process includes refactoring the 

original code to minimize the attack surface and retaining only those elements 

deemed strictly necessary. However, the rationale behind this initiative remains 

unclear to the examiners, and the provided justification was not found to be fully 

convincing. The primary argument cited is attack surface reduction—specifically, 

mitigating risks such as the compromise of a developer account that could alter an 

open-source package. 

◼ The development team was made aware of the debt transference countereffect 

often encountered when software engineering teams internalize third-party code. By 

severing ties with the external source code supplier, the team assumes additional 

responsibilities, including: a) proactively identifying potential threats and 

vulnerabilities that may be discovered in the original package; b) establishing and 

maintaining both patch detection and patch management processes to ensure that 

changes to the original package are identified, assessed for their impact, and 

incorporated into the internalized code as necessary; and c) managing an increased 

volume of code that must be maintained internally. 

◼ Runtime security testing (automated): automated runtime security testing is carried 

out using a publicly available, open-source platform that offers automated 

assessment capabilities [13]. This tool utilizes an HTTP-based spider engine to map 

system entry points and their specifications—though the attack surface can also be 

defined manually if required. It then executes a suite of well-known attack vectors 

against each interface to identify potential vulnerabilities, such as invalid or error 

responses, server error messages, or the detection of canaries. The development 

team has been made aware of the typical limitations and risks associated with over-

reliance on automated tools for security testing. These include the potential inability 

to accurately map the software’s attack surface, insufficient coverage of test 

scenarios, inadequate test case selection, and the presence of bugs or coding 

errors within the scanning engine itself. Some of the risk is mitigated with a runtime 

security test performed by a specialized information security provider and 

conducted prior to each release. Additionally, regular penetration testing is 

incorporated into the ongoing audit procedures for the e-voting system, source 

code is publicly available, build is publicly reproducible, and a bug bounty program 

allows for broader and independent scrutiny by the security community. Evidence of 

the results and related artefacts from both the runtime security and penetration tests 

were presented to the examiners. 

◼ Runtime security testing / business logic testing: a BLT test is performed by a third-

party information security services provider upon each release. The test is fully 

delegated to the supplier and the e-voting software team does not track the test 

plan nor review it to guarantee the absence of regressions or missing necessary 

tests. The examiners were allowed to review one a recent report and could confirm 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 30 
 

 

that the supplier executes a standardized testing procedure [12] and fully 

documents its results (both pass and fail outcomes). While not stored as structured 

data, records are kept available and can be audited. The team was informed that the 

approach may be suffer from limitations, such as an extensive focus on HTTP 

attacks and the voter portal (the e-voting system also exposes interfaces that 

communicate with other protocols and may be exposed to other categories of threat 

actors that will not be limited by the e-voting portal), and a business logic test plan 

that remains under control of the supplier,  

◼ Penetration testing: performed, see runtime security testing. 

◼ Bug bounties: performed, see runtime security testing. 

◼ Process documentation: the process is documented. 

◼ Counter-testing / tool attestation: one of the static analysers was tested using fault 

injection (i.e., intentionally injecting software vulnerabilities and errors in the code to 

assert good operation of the testing platform). The second analyser was not yet 

tested. More generally, security testing tools and methods are not yet subject to 

counter-testing nor attestation procedures.  

◼ Systems development lifecycle: the e-voting software team uses OWASP SAMM 

[14] as a governance framework to align its development process with secure 

software engineering best practices. The team’s processes and practices were 

audited by Swiss Post’s information security team following SAMM’s available self-

assessment guidance material [15] which produced average scores above 2.0 for 

each of the five business functions (governance, design, implementation, 

verification, operations). Results of the audit, including reports, scores, 

recommendations and the roadmap to align the e-voting software team to its 

objective were shown to the examiners. 

45. The configuration of the testing tools is inadequately documented, and, for some 

tools, documentation is entirely absent. However, due to the highly automated and 

containerized nature of the integration and deployment processes, the logging 

behaviour was also reviewed during the assessment. It was confirmed that the 

specific configurations of the tools used for building, packaging, and testing artefacts 

can, in most cases, be reconstructed from logs generated by the automation layer. 

For example, all command parameters invoked during build, deployment, or new 

releases are systematically logged and retained as part of the standard logging 

strategy. Consequently, while information regarding the configuration options of the 

testing toolset can be retrieved through investigative means (i.e., by accessing log 

archives), it remains inaccessible by more regular methods. 

46. Several standards are defined internally and at multiple levels. These include coding 

standards, standard security requirements (baseline requirements) and testing 

standards. Procedures are set to confirm adherence to a subset of said standards. 

The peer review process includes verifying for compliance with internal standards as 

part of the tasks performed by developers. Security-relevant work items (tagged as 

such) are reviewed by personnel with adequate training and/or experience in covering 

the security standards, which typically include internal security directives such as 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 31 
 

 

health checks and the security reminder. Another layer of review resides in the 

architecture board, where design decisions can be approved.  Finally, the definitions 

of ready and done (i.e., the process through which a candidate work item is 

considered ready for implementation or completed, respectively) are also 

standardized and attestation of compliance can be obtained through checklists to 

which an architect or developer visa is associated. 

47. All releases are tagged with a unique identification sequence. This applies not only to 

production releases but also to other intermediary releases (native behaviour of the 

configuration management system). 

48. While most of the documented evidence can be found in the development process, 

the testing concept and the security whitepaper, the precise configuration and 

versioning of the programs or scripts used to execute satellite or pipeline tasks remain 

either poorly documented or spread across multiple documents. A typical symptom 

of this “information spread” appears in the initial requirement-evidence mapping 

matrix provided to the examiners at the beginning of the assessment: for each 

requirement, a series of documents is provided, but not the location of the information 

in the document. Examiners either needed to find each precise detail in each of the 

documents provided or ask the Swiss Post e-voting team for direct pointers. 

49. The chosen configuration management solution natively offers all of the functions 

required in the requirement (OEV 24.1.16), including but not limited to: 

◼ The automatic unique tagging / identification of all configuration items, including 

individual items (e.g., script, source code document, configuration file, binary, etc.) 

and collections of items (e.g., branches, releases, commits and pull requests, etc.); 

◼ Granular access control capabilities (i.e., enforcement of granular roles definitions, 

individual or grouped assignments, at various levels (e.g., resource, project, group of 

projects, etc.); 

◼ Full build and integration/deployment automation capabilities; 

◼ Change approval workflows (i.e., require third-party approval, role-based approval, 

user-based approval, approval bypass procedures, etc.); 

◼ Exposing security functions through identifiable security-relevant settings; 

◼ Auditing of all read and write operations to the data plane (e.g., source code) and to 

the control plane (e.g., security configuration); 

◼ Atomicity of changes, including all affected dependencies; 

◼ Unique association between a production release identifier and its corresponding 

artifacts (e.g., source code, configuration assets, etc.); 

◼ Production of inventories of assets. 

50. Configuration assets can be inventoried through the configuration management 

system, including but not limited to: 

◼ Software releases; 

◼ Audit reports of reviews performed/approvals on the assets; 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 32 
 

 

◼ Inventory of a software release; 

◼ Source code linked with a software releases; 

◼ Commits associated with a software release; 

◼ Issues flagged as security-relevant associated with a software release; 

◼ States on security-relevant issues associated with a software release; 

◼ Authorship of all artifacts associated with a software release; 

51. Each asset processed by the configuration management system is associated to a 

unique identification key, including an identification for each version of a given asset. 

52. The security documentation of the software development process enumerates a 

comprehensive set of technical controls and measures to either increase the 

robustness and resilience of the e-voting software.  

53. However, the documentation poorly addresses measures beyond the technical, 

technological, or organizational domains—specifically, physical security controls and 

personnel-related safeguards. Such measures would typically include protocols to 

prevent unauthorized physical or logical access to developer equipment (which may 

extend beyond company-issued devices, as threat actors are not necessarily limited 

to targeting professional assets) and to development systems, such as centralized 

computing and storage resources. Additionally, personnel-related controls—such as 

candidate screening, employee onboarding, periodic reviews, and termination 

procedures—are not detailed. These objectives could generally be achieved using 

external resources dedicated to the protection of development environments [16]. 

54. The evidence provided lacks information on how evidence of efficiency of measures 

and controls is obtained (see also: requirement 24.5 – quality assurance). 

8.4.4 Subsection 24.4 (systematic correction of flaws) 

55. The process through which flaws and defects are corrected is documented and is 

subject to accrued transparency thanks to the duplication of information in the 

external Gitlab e-voting project issue page.  

56. The impact of a finding deemed relevant for the security of the e-voting system is 

assessed as part of its initial qualification using the CVSS scoring system. 

57. Steps and stages through which the findings is processed can be audited through the 

external issues page. The internal issue tracker also provides visibility on these 

operations. 

58. The flaw reporting process inherently relies on a certain degree of trust in Swiss Post. 

This is partly due to the existence of multiple reporting channels, ranging from highly 

transparent options—such as the publicly accessible GitLab project issues page—to 

more opaque ones, like the online form available on Swiss Post’s website. At time of 

examination, there was no formalized process to ensure that the resolution of a 

vulnerability does not introduce regressions. Nevertheless, the examiners consider it 

likely that the overall test strategy—which applies a sequence of diverse testing 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 33 
 

 

methods to the same artifacts, and incorporates increasingly formal approaches when 

mitigation directly impacts the e-voting protocol—serves to significantly reduce the 

risk of regression. 

8.4.5 Subsection 24.5 (quality assurance) 

59. The processes undertaken to design and develop the e-voting software are 

thoroughly documented and subjected to regular reviews, conducted annually, to 

ensure alignment with the requirements stipulated by either Swiss Post or the Swiss 

Federal Chancellery. Additionally, the development team’s work products—such as 

source code, pipeline instructions, and infrastructure code—are routinely reviewed to 

identify not only quality issues but also common software defects, errors, and security 

vulnerabilities. 

60. Certain verification processes for these work products are automated, employing 

tools such as CVE checkers for third-party libraries, source code analyzers, and 

runtime application testing solutions. Other verification activities are carried out using 

specialized methods, including business logic testing, penetration testing, and 

participation in public bug bounty programs. Any deviations from established 

requirements are systematically translated into actionable work items, ensuring 

complete traceability until each issue is resolved or formally closed—whether through 

system testing, systematic flaw remediation, or ongoing development and 

maintenance efforts. 

61. Should a defect be identified as potentially impacting the system’s security, it is 

subjected to an impact assessment and subsequently reported in the publicly 

accessible issue tracker. The Swiss Federal Chancellery emphasizes that both 

processes and work products must undergo regular and objective oversight, asserting 

that “regular and objective checks are carried out to ensure that the processes 

undertaken and the work products produced meet established expectations.” This 

suggests that the Chancellery’s definition of “objective oversight” extends beyond an 

annual review of processes.  

62. The examiners identified limited evidence of robust, consistent monitoring 

mechanisms for processes designed to ensure that work products are free from 

defects, errors, or security vulnerabilities. Although fault injection—deliberately 

introducing vulnerabilities into the source code—was confirmed during a single 

instance of vulnerability scanning, this practice appeared to be an isolated measure 

rather than part of a structured, systematic approach.  

63. Similarly, a shared checklist was observed to verify that each release complies with a 

set of requirements. 

64. Additionally, it was noted that findings from the bug bounty program are occasionally 

leveraged to refine internal defect detection processes, though this approach appears 

situational rather than systematically integrated. While performance metrics, such as 

unit testing coverage and business logic testing coverage, can be manually generated 

upon request, the examiners found no indication of a centralized framework to 



 

 

 

Federal Chancellery 

Examination of the Swiss Internet voting system 34 
 

 

consolidate and monitor these metrics as key performance indicators or equivalent 

benchmarks. 

8.4.6 Subsection 25.13 (quality of the source code and documentation) 

65. The examiners obtained evidence that all modules are subject to both integration 

(functional) and system (unit) testing.  

66. The unit testing plan demonstrated a commendable coverage, attaining over 85% of 

the total codebase at the time of assessment. Whether this level of coverage suffices 

lies beyond the scope of this evaluation. The examiners found no compelling rationale 

to mandate near-total coverage (exceeding 99%), as the associated cost and effort 

would be disproportionate to the benefits. Nevertheless, they observed the absence 

of a predefined target threshold and noted that the actual coverage metrics were not 

being actively monitored during the assessment (refer to Section 24.5 – Quality 

Assurance). 


