Report on the SwissPost-Scytl e-voting
system, trusted-server version

Olivier Pereira — Vanessa Teague®

July 17, 2019

Executive Summary

We were given a mandate by the Swiss Federal Chancellery to examine the SwissPost-
Scytl e-voting system, version v1, which was certified for use by up to 50% of voters.
This followed previous work (with Sarah Jamie Lewis) in which we discovered a cast-as-
intended verifiability failure [LPT19a]. Our mandate was accomplished on a best-effort
basis, within very limited time-constraints. The specification documents were the core
of our mandate, not the code.

We did not find any new vulnerabilities in cast-as-intended verifiability that are ex-
ploitable in the code. We did find examples in which the specification can be interpreted
in a way that causes cast-as-intended verifiability to fail, though implementation choices
in the current version of the code prevent successful attacks. However, the design up-
dates are so recent that it is impossible to rule out exploitable errors.

We did find significant errors and omissions in the proof of individual verifiability
[Scy17b] (i.e. cast-as-intended verifiability), as well as significant deviations from the
current protocol. There are also differences between the specification and the code.

As a result, we conclude that cast-as-intended verifiability may or may not be sound
now, but it is not proven and has not had sufficient examination as far as we know.

Although we did not find new attacks within the minimum adversary model in which
the server-side of the voting system is completely trusted, we did find specific attacks
within the stronger model that is often informally claimed throughout the documents.
A single malicious entity on the server side can read and undetectably alter votes. This
is easy given the absence of use of a verifiable mixing protocol but, less intuitively, would
remain possible even if a verifiable mixnet was used.

We would like to thank SwissPost for their prompt and comprehensive answers to our
technical questions, and for their intelligent response to our earlier security disclosures.

*The University of Melbourne, Parkville, Australia. vjteague@unimelb.edu.au

Mandate and background

This report was prepared under a mandate from the Swiss Federal Chancellery. We
examined the following documents:

[Scyl7b] Scytl, April 2017, “Swiss Online Voting System Cryptographic proof of Indi-
vidual Verifiability,”

[Bv17] Basin and Capkun, May 2017, “Review of Electronic Voting Protocol Models
and Proofs (Combined Final Report),”

[Scy19a] Scytl, 2019, “Scytl Online Voting Protocol Specifications — Differences be-
tween versions 5.2 and 5.0,”

[Scy19b] Scytl, 2019, “Scytl Online Voting Protocol Specifications — Document version
527

[Scy19c] Scytl, 2019, “Scytl Online Voting Protocol Specifications — Document version
5.3, (communicated on June 23, 2019)

[Sec19] Kudelski Security, May 2019, “Swiss Post Security Review of Key Crypto-
graphic Elements of the E-Voting Solution (Version with individual verifiability at
50% of the electorate),”

[Scy19d] Scytl, May 2019, “Security analysis of key cryptographic elements for individ-
ual verifiability, v 1.1.”

The first two are publicly available; the rest remain confidential at the time of writing.
A symbolic proof is also publicly available [Scy17al, but we did not examine it in detail.

We were also provided with the source code for the system and extensive answers
to technical and nontechnical questions about the system specification from experts at
SwissPost.

Methodology

The core focus of our mandate was to analyze, on a best-effort basis, whether the crypto-
graphic protocol specified in [Scy17b] is correctly instantiated in the system specification.
Version 5.3 of the protocol specification [Scy19c¢|, delivered at a late stage in this man-
date, already included changes related to a significant number of observations that we
had previously made.

Our methodology consisted of reading the documentation carefully and, when it was
not clear, seeking clarification either from SwissPost or from the code directly. This
means that we have conducted a thorough examination of the proof document and a
fairly careful read of the parts of the specification that relate to the main privacy and
verifiability properties, but we have only spot-checked the code to answer particular
questions when the specification was not clear.

Contents

1.

Introduction: defining the security goals
1.1. The logic of assurance
1.2. Thought experiment: super-simple voting system

. Foundations: examining the Cryptographic proof of Individual Verifiability

2.1. The structure and importance of computational security proofs

2.2. Gaps in the proof of individual verifiability
2.2.1. Assumptions.
2.2.2. Theorem statement
223. Proof

2.3. Differences between the spec and the proof of individual verifiability . . .

. Corrections to the specification—within the trust model

3.1. Returning choice codes only if all retrievals have succeeded
3.1.1. Thesetting

3.1.2. Substituting a choice but generating the correct return code
3.1.3. How does the proof of individual verifiability deal with this case?

3.1.4. How to address the problem
3.2. Correcting the specifications of the zero knowledge proofs .

3.2.1. Checking the lengths of input values: exponentiation proof
3.2.2. Checking the lengths of input values: proof of plaintext equality .
3.2.3. Using extra-long ciphertexts to submit inconsistent vote and par-

tial choicecodes
3.2.4. Recommendations.

3.3. Summary of attacks on the spec, but not the code, within the trust model

Examining sVote’s trusted server side—outside the trust model

4.1. The lack of verifiable mixing
4.2. HMAC-based code recovery

4.2.1. Dropping a confirmation while returning the correct Vote Cast Code

4.2.2. Brute-forcing a confirmation that the voter did not want

4.2.3. Discussion and possible mitigations
4.3. The use of trapdoored parameter generation
4.3.1. Vote privacy - server-sideonly
4.3.2. False return-code generation - client-server collusion

. Receipt Freeness
. Discussion and Summary

. Trapdoored election parameters

S Ot

20

24
26
27

27
29
30
30
31
32
33
34
35

36
37
40

There are two ways of constructing a software design: One way is to make
it so simple that there are obviously no deficiencies and the other way is to
make it so complicated that there are no obvious deficiencies.

— C. A. R. Hoare [Hoa81].

1. Introduction: defining the security goals

There are numerous legal requirements for an Internet voting system certified for use
by up to 50% of the Swiss electorate [Chal8b, Chal8a]. The ones most relevant to this
report are summarised here.

e Cast-as-intended verifiability. This is intended to detect a cheating client, on

the assumption of the trustworthiness of the server system.

“If a system is to be authorised to cover more than 30 per cent of the cantonal
electorate, the voters must be able to ascertain whether their vote has been ma-
nipulated or intercepted on the user platform or during transmission.” ([Chal8a]
individual verifiability, 4.1 and 4.2).

“For the purpose of individual verification, voters must receive proof that the server
system has registered the vote as it was entered by the voter on the user platform
as being in conformity with the system. Proof of correct registration must be
provided for each partial vote.” ([Chal8b], Article 4, Paragraph 2.)

Vote privacy. “It is guaranteed that neither employees nor externals obtain data
that allow a connection to be made between the identity of voters and the votes
they have cast.” ([Chal8al, 2.8.1)

Coercion resistance. “the risk of vote selling is not significantly greater than
with postal voting.” ([Chal8al, 4.2.2)

Evidence of protocol security. “A cryptographic and a symbolic proof must be
provided. The proofs relating to cryptographic basic components may be provided
according to generally accepted security assumptions (for example, the ‘random
oracle model’, ‘decisional Diffie-Hellman assumption’, ‘Fiat- Shamir heuristic’).”
([Chal8a], 5.1.1)

Annex Sections 4.2.3 and 4.2.4 also describe limitations on the opportunity for a
malicious system to cast a vote without the voter’s approval, and to limit the attacker’s
probability of forging an apparent (but false) verification to at most 0.1%. We will
return to these provisions in Section 4.2

1.1. The logic of assurance

In order to be convinced that sVote v1 satisfied a certain cryptographic property, we
would follow three steps:

A (computational) cryptographic proof document would define the property, specify
a cryptographic protocol and a set of assumptions, and prove that the protocol
satisfied the property given the assumptions. For example, one important property
is cast-as-intended verifiability (as described above). In the accepted model, an
attacker has access to many clients but no server-side components.

A precise specificiation would describe exactly how the cryptographic protocol was to
be implemented. For example, where the cryptographic protocol describes zero
knowledge proof systems with certain properties, the specification describes the
exact parameters that are chosen for the proof system, the format of the cor-
responding messages, the input validation process with the corresponding error
signals, ...

The code would implement the specification exactly as described.

At each transition, the assumptions made at a higher level of abstraction must be
delivered by the lower level—there is nothing gained by proving something that does
not match the real system. If this sequence of steps were followed, there would be some
assurance that, given the assumptions in the proof, the software system had the relevant
security property.

The first sections of this report follow the structure of that assurance. Although we did
not find new attacks against Individual Verifiability that fall within the security model
and are exploitable in the code, we identified many places where the logic of assurance
falls short. In Section 2 we identify several gaps and errors in the proof, along with
significant differences between the proof and the specification. In Section 3 we examine
the specification, version 5.3 [Scy19c]. We explain some important details that need to
be filled in and errors to be corrected—in each case, these issues could potentially lead
to attacks within the trust model if the spec were interpreted in a certain way, though
these attacks do not actually work on the code as it is now implemented. We identify
several points in which the code differs from the specification. Even if these differences
between the code and the specification appear to prevent some attacks, it is unclear
whether these, or other differences, would actually introduce other weaknesses that do
not appear in the specification.

In Section 4, we examine the trusted server model and undetectable verifiability fail-
ures that can arise with even one cheating server-side component. We also consider the
implications of improper generation of the voting parameters. Although these attacks
are outside the security model, it is important to understand that they are present,
and to communicate clearly about the possibility. Finally, in Section 5 we examine the
receipt freeness of the scheme.

We begin with a thought experiment: a super-simple voting system against which to
compare sVote’s security properties.

1.2. Thought experiment: super-simple voting system

tVote Codes Tablgl

Choice codes,
Confirmation messages,
Vote cast codes

tVote _
Election Outcome
vote, codes trusted server

Client

Figure 1: A super-simple voting system with vote choice codes, ballot casting and vote
cast codes, and a trusted server side

Consider an imaginary super-simple trusted voting system tVote, depicted in Figure 1.
tVote has a single server tVote, who also generates a code sheet for each voter. At the
beginning of the election, ¢Vote generates and publishes an encryption public key pk;voe-
At voting time, the voter uses their voting client to authenticate to tVote, then submits
a vote encrypted with pk;vee. tVote decrypts the vote, looks up the voter’s choice codes
in its code table (which it remembers because it generated them), and returns to the
voter the choice code corresponding to the vote she cast. The system also has ballot
casting and confirmation codes, also generated by tVote and printed on the voters’ cards.
When a voter receives the correct vote choice codes, she enters her ballot casting key. If
tVote receives the expected ballot casting key from an authenticated voter, it confirms
the vote and returns a Vote Cast Code to the voter. At the close of polls, tVote counts
all confirmed votes and announces the results.

We haven’t provided a formal proof but, apart from that, it seems this super-simple
system is compliant with (a minimal interpretation of) the requirements given above.
Assuming that tVote is trustworthy, a cheating client cannot generate proper choice
codes without having submitted the voter’s chosen vote. Likewise, the cheating client
cannot derive the proper Vote Cast Code without going through the process in which
tVote confirms the vote. Vote privacy is protected in the sense that third-party observers

cannot learn how people vote, so it satisfies the second requirement, assuming that we
trust ¢Vote not to divulge individual votes to employees or externals.

However, this voting system has some obvious limitations. Vote privacy is not pro-
tected from t¢Vote itself, or anyone it chooses to leak to. Nor is integrity: ¢Vote could
simply lie about the election result. It could easily collude with a cheating client to re-
turn the codes that the voter expected, even if the sent or recorded votes were completely
different.

We will examine the security properties of sVote v1, the SwissPost-Scytl e-voting
system that was certified for use by up to 50% of voters, while comparing it with the
(obvious) security properties of tVote. Our analysis considers the cryptographic proto-
col properties, not the procedural or administrative protections that might be applied
to either system. We find that, despite its much greater complexity, sVote v1 actually
doesn’t have stronger security properties than tVote. Although, strictly speaking, it
seems to meet the requirements for cast-as-intended verification under the assumption
of a trusted server, neither privacy nor integrity are protected against server-side ma-
licious behaviour, even by a single component. We did not find any specific places in
which sVote v1’s security properties are strictly less than tVote’s, though we have in
the past [LPT19a]. The more complex system is more, not less, likely to have unno-
ticed subtle bugs that undermine the intended security properties, especially given the
numerous inconsistencies and gaps that are identified in our report.

2. Foundations: examining the Cryptographic proof of
Individual Verifiability

A description of the sVote v1 protocol is available online [Scyl7b] (dated April 2017)
and, in the same document, a computational proof of individual verifiability is offered,
proof that is a formal requirement for a system certified for use by more than 30% of
the cantonal electorate.

The protocol description in this document is the basis of the analysis performed in
this mandate.

We show that the protocol description is imprecise in various places, and also there are
important gaps in the computational proof. Furthermore, we point to several significant
discrepancies between the protocol description [Scy17b] and its instance in the protocol
specification [Scy19b, Scy19c].

Many of the issues we raise were already noted by prior reports [Bv17, Sec19]. For
example, Basin and Capkun note several “remaining issues,” even for the questions that
they describe as being mostly resolved. They recommend that “a single, unambiguous,
description of the e-voting protocols should be created, with an explicit control flow,”
in order to ensure that that abstract model that was proven secure would match the
specification that was implemented. We find the same sorts of issues still unresolved.

But before we enter this discussion, we would like to explain the structure and impor-
tance of a computational proof for a cryptographic protocol for the reader who may be

unfamiliar with this specific field of computer science.

2.1. The structure and importance of computational security proofs

Computational security proofs (or just “proofs” for the rest of this section) are a fun-
damental tool of modern cryptography. As Katz and Lindell put it in their standard
textbook on cryptography [KL15]:

Without a proof that no adversary with the specified resources can break
some scheme, we are left only with our intuition that this is the case. Ex-
perience has shown that intuition in cryptography and computer security
is disastrous. There are countless examples of unproven schemes that were
broken, sometimes immediately and sometimes years after being developed.

The requirement set by the Swiss Federal Chancellery to offer such a proof is therefore
in full compliance with the standard best practices in the field.

In the context of cryptographic protocols (such as sVote), proofs require the presence
of three components [KL15, Chap. 1].

1. Formal definitions state which security guarantees are desired for the protocol.
Such definitions clearly express what threats are in scope, and what threats are
excluded. They help making sure that the person deploying a protocol shares with
the protocol designer a common understanding of what the protocol is supposed
to achieve.

2. Precisely-stated assumptions express what the components used in the system are
supposed to achieve. sVote, just like most cryptographic protocols, cannot be
shown to be secure unconditionally. It is therefore of the utmost importance to
clearly understand which assumptions are needed for a protocol to be secure, and
to validate these assumptions to a maximum extent (e.g., by having them publicly
reviewed by a large expert community).

3. A proof of security shows that, if the assumptions are satisfied, then the pro-
posed cryptographic protocol must be secure in the sense of the formal definitions
expressed before.

In the following subsection, we identify various gaps in the proof of individual verifi-

ability, focusing on the last two aspects: assumptions and proof of security.

2.2. Gaps in the proof of individual verifiability

Our discussion follows the order of the proof document [Scy17b].

2.2.1. Assumptions

The protocol description starts by listing the cryptographic building blocks used in
sVote [Scyl17b, Sec. 2]. We point out various shortcomings observed in their description,
following their order of presentation.

Symmetric key encryption scheme The description of AES-GCM is confusing, as it
does not mention the existence of an Initialization Vector (IV'), which is a key
element of this encryption scheme, and a part of its standardized API [NIS07]. We
assume that, for the purpose of this document, the IV is considered to be part of
the ciphertext (the scheme would not be functional otherwise). In itself, this is a
minor observation, except that it leads to some further confusion in the proof, as
we will see below.

Signature scheme RSA-PSS is briefly presented, but the notation is also confusing. In
particular:

e We assume that ME represents the PSS transform. If this is correct, why is it
applied to Hs(m) and not to m?

e Or is H, the actual hash function (or random oracle) intended to be used to
hash the message as part of the PSS transform? But that hash function is
supposed to have an output much shorter than n, which appears to be in
contradiction with the requirement of Z,, as a range.

e And why would the verification function work as it is presented, since ME has
a random padding? (The PSS verification function would not use ME for this.)

These aspects create confusion when reading step B.4 of the computational security
proof (see below).

Non-interactive zero-knowledge proofs of knowledge We faced several difficulties with
the description of these NIZKPK:

1. A NIZKPK is defined as a combination of four algorithms, the first one be-
ing called GenCRS, which is expected to produce a common reference string
(CRS). The purpose of a CRS is unclear for the ZK protocols that are de-
scribed in this document, which rely on a random oracle and, as pointed in
a footnote, this algorithm is simply omitted from the description of all four
of the NIZKPKs that are presented in the rest of this section. What is its
purpose here, if there is any?

2. The fourth algorithm in the definition of a NIZKPK is NIZKSimulate, which
is expected to take a (false) statement as input and output a simulated proof.
As it is, the mere existence of such an algorithm contradicts the soundness of
the NIZKPK, which states that it is not possible to produce a valid proof for
a false statement. The description should be more precise (e.g., explain that
the simulator has the possibility to control the random oracle used by the
cheating verifier, and under which conditions), in order to be able to explain

why this is not an issue. Note that this oversight is directly related to the
attacks against sVote that have been previously described [LPT19¢].

3. The proof of correct decryption DecP is presented as being EqDI with different
notations, and EqDI is actually used as a proof of correct decryption in the
CreateVote function. Even if they are both non-interactive versions of the
Chaum-Pedersen protocol, they are proof systems for different families of
statements, which is reflected in the different inputs given to the random
oracle in the Fiat-Shamir transform: for instance, the message m is part of
ProveDec but does not exist in ProveEq. So, these actually are two different
protocols. This will lead to difficulties in the security proof — see discussion
below.

Pseudo-random functions The exponentiation function is presented here as a pseudo-
random function (PRF). This is obviously not true since it is homomorphic (this
property is noted later in the document). It is known that this function is a weak
pseudo-random function under the Decisional Diffie-Hellman assumption [NPR99],
that is, it would only behave as a PRF when the adversary sees queries on random
inputs. The document then states that this PRF is “computed over the small
primes representing the voting options”. These are not random group elements,
even though they may, in some conditions, complicate the exploitation of the ho-
momorphic property of this function. Still, this use of the exponentiation function
remains incompatible with the assumptions of the proof of Naor et al. [NPR99],
and its security would not seem to be reducible to any of the 35 variants of the dis-
crete logarithm problem reported in the ECRYPT report on “Main Computational
Assumptions in Crytpography” [ECR13]. Besides, this restriction to small primes
is not strictly satisfied, as this PRF is also applied, for instance, to the square
of the Ballot Casting Key in the ballot confirmation step, which is unlikely to be
prime (it is a random integer) [Scy17b, p.17], and could actually be the product of
the small primes used to encode the candidates. This will be the source of some
of the difficulties pointed in Section 4.

Verifiable mixnet The description of the Mix algorithm omits that this algorithm needs
to have at least the public key that is used to encrypt the ciphertexts, in order
to be able to perform re-encryption, possibly a secret key if partial decryption
is performed, and its own public key (typically for commitments), or a common
reference string. Ignoring this CRS and/or public key is precisely the source of
a previously published protocol flaw in sVote [LPT19b]. It is claimed that the
mixnet used in sVote is the scheme of Bayer and Groth, and that it has been
proven to be sound. We observe that the Bayer and Groth proof [BG12] focuses
on the interactive setting, and only mentions that a non-interactive version could
be obtained through the Fiat-Shamir transform, without saying how this should
be done. Even though the Fiat-Shamir transform may be relatively standard for
3 rounds Y-protocols (with some caveats [LPT19c¢]), it is much less standard for
protocols that have more than 3 rounds, and the Bayer-Groth protocol is 9 rounds.

10

Indicating how the Fiat-Shamir transformation is applied for such a 9 round pro-
tocol, and why the proposed transformation is sound, would be important. (Note
that, even though this verifiable mixnet is present in the 50% version of sVote, it is
actually not needed. Nevertheless, it does not seem advisable to keep potentially
insecure components in the system.)

2.2.2. Theorem statement

The theorem statement is puzzling in many ways, and just seems wrong as it is stated:

1. Although the protocol described in the proof document is quite general, the actual
security proof models only the case in which there is one question on the ballot.
The spec, obviously, incorporates multiple different choices within one vote. This
does not seem to be an immediate extension, as the ZK proofs would need to take
care of products — we will return to this observation in 3.1.

2. Tt is required that (ProveEq, VerifyEq, SimEq) is a sound NIZKPK scheme. However
(and we will come back to this in the corresponding proof step), this cannot be
sufficient, as the scheme faces an adaptive adversary. As previous attacks have
shown [LPT19a], adaptivity has already been used to break individual verifiability
of this system. So, it appears that this assumption in the theorem statement
should be modified in order to make it possible to build a valid proof.

3. The (adaptive) soundness of the (ProveEq, VerifyEq, SimEq) proof system relates to
a set of statements, but this proof system is actually used for two different sets
of statements: to prove exponentiations (Wexp), and to prove correct decryption
(Tpleq). It should be explained why this single proof system would offer the right
form of soundness property for those two sets of statements and, in particular, why
the product [[j_,(pCCi?) can safely be omitted from the inputs of the Fiat-Shamir
transform in 7peq, even though it is included in the decryption proof [Scyl7b,
Sec. 2.4].

4. Tt is required that the symmetric encryption scheme can be modeled as a pseudo-
random function. This is a very strong requirement, which is not satisfied by the
AES-GCM encryption scheme used in the system. Indeed, AES-GCM requires
the use of an IV in order to be secure — a fact that is not discussed in the doc-
ument, as pointed above. So, either one assumes that the IV is picked by the
encryption algorithm, but the encryption algorithm then becomes nondeterminis-
tic/probabilistic /stateful, which is incompatible with being a PRF, or one assumes
that the IV is provided as an input to the encryption algorithm, but the require-
ment that this IV should be unique, which is crucial for the security of the GCM
mode, is incompatible with the requirement that the encryption function would be
a PRF, since a PRF can be challenged on any input, and not only on (partially)
unique ones.

11

5. It is required that the size of the group G should be much larger than the number
of voters. This is very vague. Is there any security parameter that governs the
difference? (For instance, something like: ¢ should be at least 2%° times bigger
than the square of the number of voters?)

6. It is required that H is collision resistant. But H is actually modeled as a random
oracle, as stated at the end of the statement, which would make it trivially collision
resistant. Or is this a way to state that the range of H should be large enough?

7. Tt is required that the hash function underlying the signature scheme should be
collision resistant. Why is the assumption based on that hash function and not
on the signature scheme? Does the security of that hash function matter if the
signature scheme itself is broken? (The security proof of the RSA-PSS signature
scheme models the hash function as a random oracle, which is certainly collision
resistant.)

8. The theorem claims that the attacker has a negligible advantage when trying to
defeat the cast-as-intended verifiability property. However, there is no rigorous
definition of that advantage at this stage: it only comes in the next section. Why
using an asymptotic notion (negligible advantage)? Such a notion would need to
define a security parameter in order to make sense, and there is none. Concrete
security bounds, rather than asymptotic ones, would be much more expressive.

2.2.3. Proof

The proof of sVote follows the standard game hopping approach [Sho04]. That approach
starts by expressing an attack game between an adversary who tries to break the se-
curity of the protocol, as expressed in the definition, and a challenger, who interacts
with the adversary on behalf of the protocol’s honest components. This game is then
progressively modified, step by step, until it becomes obvious that it cannot be won
any more with any advantage. The key element of the proof is then to show that any
single change made between two game steps is indistinguishable for the adversary. This
is where the assumptions of the theorem come into play: the proof would show that any
adversary able to spot a difference between two successive games could be efficiently used
to invalidate one of the assumptions made for the security proof. Eventually, the proof
concludes by observing that, since the last game in the proposed sequence of steps is
obviously lost by the adversary, and since any pair of consecutive games in the sequence
cannot be distinguished by the adversary, then the initial game in which the adversary
was trying to break the system must also be lost by the adversary. One key element
of this approach is that no assumption is made about the adversary’s attack strategy:
the proof simply shows that no strategy could succeed to win the game proposed by the
challenger with any significant advantage.
We observed several issues in the use of this proof methodology.

Game A.1 A vague assumption on the size of the group is used here. It should be
possible to derive from here how big the group must be to guarantee the expected

12

negligible advantage, so that the reader can be convinced that there is indeed
something negligible here.

Game A.2 Contrary to what is stated (and needed for the proof), it is quite easy to
distinguish Game A.2 from Game A.1. In Game A.1, ProcessVote verifies all three
ZK proofs: Tgen, Texp and Tp1eq. However, in Game A.2, PerfectProcessVote verifies
the Schnorr proof, but not the other two. This means that, if the attacker submits
invalid 7Texp and 7p1eq, the challenger will stop these proofs in A.1, but not in A.2.
We suspect that adding the verification of these two proofs in the process would
solve this issue.

Game A.2 [t is claimed that the adversary cannot distinguish Games A.1 and A.2
because of the soundness of the ZK proof. However (and this is a general remark
for all proof steps), no reduction is made to actually prove that this assumption
is sufficient to make these games indistinguishable. The soundness property only
offers guarantees when the proof statement is given as an input to the cheating
prover (and to the verifier). However, in the current game, the prover is actually
free to chose (large parts of) the statement in an adaptive way, which means
that, at a minimum, some form of adaptive soundness would be needed. It is
also unclear that this would be sufficient: extra properties of the NIZKPK, e.g.,
simulation soundness, may be needed. Relying on (basic) soundness (which is
actually undefined in the paper) is actually the source of the issues we identified
in a previous version of the system [LPT19c¢].

Game A.3 It is a bit surprising to replace the PRF f¢, with a random oracle here. It
appears to just be making random choices inside the challenger instead of applying
a PRF. Would it be more clear to talk about replacing f with a random function?

Game A.4 This part of the proof uses the problematic assumption (as discussed in
Sec. 2.2.2, item 4) that the encryption function (AES-GCM) behaves like a PRF.
However, this assumption does not seem to be needed: standard CPA indistin-
guishabilty seems sufficient. Furthermore, this game may actually be completely
superfluous for a computational proof of the protocol that is actually implemented,
since the adversary does not see these ciphertexts at all in the absence of a public
bulletin board. (See also discussion in Sec. 2.3.)

Games B.1, B.2, B.3 Same observations as in Games A.1., A.3, A4 (respectively).

Game B.4 This proof step is quite different from the others. Its goal (even though not
clearly stated) seems to be to prove that a signature (which is an authentication
primitive) leaks nothing about the signed message. Unlike the other proof steps,
it focuses on low-level properties of RSA-PSS rather than on properties of generic
cryptographic components (PRF, ZK proofs, ...). We faced several difficulties:

1. Is there any need for the notations Oy, H'; and 7,7 They seem to just all
relate to the definition of a basic random oracle, which could be H'.

13

2. How could it be that Game B.3 and B.4 are indistinguishable if, in B.3, the
attacker uses an actual function Hy (as suggested in the conclusion of the
B.4 game) while, in B.4, it must query an oracle instead? Distinction seems
trivial based on the different game interfaces.

3. If, on the contrary, H, is modeled as a random oracle, why would there be
any €, gap here?

Game C We did not review the “C” series of game in detail, but the same general
remarks that will be given at the end of this section apply to them as well.

Based on this analysis, we feel that the computational security proof offered in this
document [Scyl7b] leaves too many questions open and does not offer convincing evi-
dence of the soundness of the protocol design with respect to individual verifiability.

A symbolic proof of security is also offered for this protocol [Scy17al. Even though we
did not review it, that analysis does not fill any of the gaps identified here. Indeed, and as
stated by the author of the symbolic analysis report: “symbolic models of cryptographic
protocols deal with abstractions thereof. As a result, they omit numerous cryptographic
and mathematical properties of the underlying primitives [...]”. Those properties are
precisely those analyzed in a computational security proof.

We would make the following recommendations.

Recommendation 1 (complex; proof). The relevant properties of the cryptographic
primitives on which the voting scheme relies should be properly defined. In particular,
we would expect to see:

o The relevant properties of the NIZKPK should be provided and defined. The algo-
rithms that make a NIZKPK should also be defined in a meaningful way.

e A clarification on the form of pseudorandomness that is expected from the sym-
metric encryption scheme, and of why it is sufficient.

e The PSS transform should be clarified, as its internal properties are used in the
proof. The distinction between hash functions and random oracles should also be
clear.

e The presentation of the exponentiation function as a PRF should be corrected.

o The 9-round Fiat-Shamir transform needed for the mix-net should be defined and its
security documented. Or, the whole discussion about the verifiable mix-net should
be removed, since it is not used.

Recommendation 2 (complex; proof). The theorem statement should be clarified. The
assumptions that are needed should be expressed precisely and, based on the definition
of the security properties coming from the previous recommendations, concrete security
bounds should be provided.

14

Recommendation 3 (complex; proof). The security proof needs to be clarified in var-
tous places, and the identified gaps need to be fived. In particular, actual reductions
would be needed at least for the most important game hops, in order to detect if there
are no other damaging gaps (such as the one related to the soundness of the proofs).
Such reduction, written in sufficient detail, will also allow fizing presentation issues in
the protocol description, where some functions receive inputs that they make no use of,
while others use variables that they never received.

The proof could probably be considerably simplified if the bulletin board, which is
not given to the adversary in the real system, were taken away from the adversary in
the security model used for the proof as well. (Of course, that model would not be
acceptable in a universal verifiability context.)

2.3. Differences between the spec and the proof of individual
verifiability

There are significant differences between the spec [Scy19¢] and the proof of individual
verifiability [Scy17b]. Some examples:

e In the proof, there is only one public key for both votes and partial choice codes:
the proof of plaintext equality (p.13) is really a decryption proof, showing that ¢
encrypts the product of the partial choice codes (which are sent unencrypted). The
voter sends simply {pCC,}i_; (bottom p.13). In the spec, it sends them encrypted
with a public key - the partial choice code public key pk, . - that doesn’t exist in
the proof. Rather than sending just pCC’s, it sends Fy = Encr(pCC'; pkec).

This means that more corrections are necessary to fill in the gaps in the model of
zero knowledge proofs described in Section 2.2.2. The proof document says that
Tp1eq—the proof of consistency for the partial choice codes—is an application of
ProveEq, the proof of equality of discrete logs. However, the presence of a different
public key means that the proof needs different inputs in order to be valid.

The protocol specification also relies on a proof of plaintext equality [Scy19c,
Sec. 5.2], which is not defined in the proof of individual verifiability document,
even though it is definitely important for the verifiability of the protocol described
in the specification document.

e In ProcessConfirm, the proof (p.15) doesn’t mention using VC;4 in the compu-
tation of VCC™ - it simply takes fc , (CM®) . The spec, however, (Step 5.3(9)a,
p. 49), says [VCC = HMAC(CM|VCID|EEID, CodesSK). The crucial differ-
ence is the inclusion of the VCID and the election ID. Similarly, in the proof,
the long choice codes are fesx(pCCi%) (p. 14, createCC), but in the spec it’s
HMAC (pCC|VCID|EEID|{ correctnessID}, CodesSK). The latter seems better,
but the proof should be updated to match the current version of the protocol.

15

e The proof has an explict function VerifyTally, which includes verifying the shuffle
proof. The spec does not include details on either generating or verifying a shuffle
proof.

e The proof has a bulletin board, accessible by voters and everyone else, which the
voters can use in some circumstances to verify transactions, though this is not
part of the standard workflow. The spec allows voters only to query data via their
client. Voting data is stored on the Election Information Context, which the voter
can query (in 5.2.1 to see her Choice Codes and in 5.3.1 to retrieve her Vote Cast
Code) again. An extra layer of encryption is also used here, which is not part of
the security proof.

e Basin and Capkun [Bv17] write, “write-in votes have been eliminated from the
system design, and hence need no longer be part of the model.” Write-in votes
have now reappeared in the system design, though they are still not part of the
model. Although write-in votes are not covered by the individual verifiability
requirement, there needs to be careful analysis to show that the existence of write-
ins does not undermine individual verifiability for those voters who do not choose
a write-in candidate.

The absence of a bulletin board fundamentally alters the assumptions for individual
verifiability. And the absence of mixing verification completely alters the opportunities
for server-side misbehaviour.

Similarly, to prove verifiability for only single-question elections excludes a whole class
of potential attacks relating to manipulating different parts of the ballot. It is clear that
the current version of the spec includes several measures for preventing attacks of this
style, such as the inclusion of the voter’s ID into the hash ([Scy19c] 5.2 10(c)). These
measures are not modelled in the proof, and hence not proven secure.

Overall, we did not find any new ways that cast-as-intended verifiability fails for the
protocol described in the proof document [Scy17b], but there is no convincing proof of
cast-as-intended verifiability that matches the current version of the protocol.

Recommendation 4 (complex; proof). Update the proof of individual verifiability to
match the current protocol.

3. Corrections to the specification—within the trust
model

In this section we describe two different attacks on cast-as-intended verifiability that
are possible based on a reasonable interpretation of the spec and correspond to aspects
that are not discussed in the security proof document: the first is related to the case
of voters picking multiple candidates (the proof considers only a single candidate), and
the second is related to input validation in the ZK proofs (which is not discussed in the
proof document). In both cases, the code is not vulnerable because it contains extra

16

c) For each partial choice code pCC:

e Compute a (long) Choice Code (ICC) using the partial Choice Code
concatenated with the Verification Card ID, the Election Event ID, the
corresponding voting option attributes sent together with the partial choice
code and the Codes Secret Key as:

ICC = HMAC("pCC|VCID|EEID|correctnessID", CodesSK)

e Compute the hash of the long Choice Code: Hash(ICC) and a symmetric key
EKey = KDF(ILCC, keylength).

e Retrieve the encrypted short choice code from the mapping table using
Hash(lCC) and decrypt it using EKey. The result is the short choice code to
be sent to the voter. If it is not possible to find an entry in the mapping table
an error is logged and the Client Context is informed.

d) Check that all the retrieved short choice codes are different.
11) If short choice codes are correctly retrieved, the Election Information Context generates the

receipt and stores the vote:

Figure 2: Iteration over choice code retrievals in the spec. It is unclear whether a single
failed attempt at code retrieval halts execution.

protections that are not explicit in, or not the only interpretation of, the spec. In each
case, this implies that the spec needs to be updated to include the protections that are
already present in the code.

In both cases, a voter can receive the vote confirmation code that she expects although
the cheating client has substituted a different choice.

So these attacks are consistent with the threat model and the definition of individual
verifiability defined by the Federal Chancellery, and are possible based on some interpre-
tation of the spec, but do not actually work on the current version of the code, because
it implements a different interpretation.

3.1. Returning choice codes only if all retrievals have succeeded

The spec [Scy19¢], Section 5.2(10)c, describes the process in which the Vote Verification
Context computes the choice codes that are returned to the voter—this is shown in
Figure 2. It iterates through the partial Choice Codes it has received, looking them up
in the Codes Table and returning the corresponding short Choice Code. The question is
what should happen if a lookup fails. The spec says, “If some validation is not successful,
an error is logged, and the Client Context is informed.” It does not say that the loop
breaks. Step (11) then says, “If short choice codes are correctly retrieved, the Election
Information Context generates the receipt and stores the vote.” It does not say, “If all
short choice codes are correctly retrieved...” A literal interpretation would take this to

17

for (bytel[] longCode : longCodes) {

byte[] hashedLongCodeBytes = primitivesService.getHash(longCode);
5tring hashedLongCode = new String(BaseG4.encodeBase64(hashedlongCodeBytes), StandardCharsets.UTF_8);
JsonString encryptedShortCodelson = mappingForCard.getlsonString(hashedLongCode);
if (encryptedShortCodelson == null) {

String errorMessage =

String
.format(
. "Encrypted short code not found for tenant: %s, election event id: %s and verification card id: %s",
tenantld, eeid, verificationCardId);
throw new ResourceNotFoundException(errorMessage);

String encryptedShortCode = encryptedShortCodeJson.getString();
byte[] encryptedShortCodeBytes = Base64.decodeBase64({encryptedShortCode);
CryptoAPIDerivedkey derivedKey = kdfDeriver.derivekey(longCode, longCode.length);
SecretKey mappingKey = symmetricService.getSecretkKeyForEncryptionFromDerivedKey(derivedKey);
byte[] shortCodeBytes = symmetricService.decrypt(mappingKey, encryptedShortCodeBytes);
String shortCodeString = new String(shortCodeBytes);
if (shortCodes.contains(shortCodeString)) {

throw new CryptographicOperationException(”Duplicated short choice code retrieved”);

1
shortCodes.add(shortCodeString) ;
1

return shortCodes;

Figure 3: Iteration over choice code retrievals in the code. It is clear that a single failed
attempt at code retrieval throws an exception.

mean that the subsequent actions are taken if any short choice codes are successfully
retrieved. The next two steps (12 & 13) specify that the vote’s status is updated and the
choice codes are returned to the voter, without conditioning on whether all the choice
codes are correctly retrieved.

This leads us to a simple recommendation for a spec correction:

Recommendation 5 (simple; spec). Update Section 5.2 so that any retrieval failure
should stop execution, none of steps 11-13 should be performed, and none of the choice
codes should be returned to the voter.

However, when we look at the code, it throws an exception as soon as a validation is
not successful—this is illustrated in Figure 3. So none of the subsequent steps in 5.2 are
performed, and in particular no short choice codes are returned to the voter unless all
short choice codes are correctly retrieved. This interpretation is confirmed by answers
from Swiss Post. Hence this does not lead to any real attack that we could identify.
Nevertheless it provides an interesting study in the importance of precise specifications.

In the rest of this section we examine what might happen if an implementer mistakenly
interpreted the spec to allow the return of some short choice codes, even if later retrieval
attempts for the same voter failed. We explain what might go wrong, and how this
relates to the formal proof, the precise specification, and the actual code.

We are interested in the setting in which there are multiple questions on the ballot.
We examine exactly what happens when a dishonest client sends valid partial choice
codes for some questions but not others. We assume

1. That the server-side returns the short choice codes that can be retrieved, even if
other partial choice codes are invalid.

18

2. That if the voter receives correct short choice codes for some questions but not
others, she infers that the ones for which she received valid ones were correctly
sent.

The first assumption is false for the current implementation in the code—this is clear
from both answers from SwissPost and reading the source code. We do not know whether
the second assumption is valid or not. The following section describes what would hap-
pen if these assumptions were true, in order to demonstrate the importance of clarifying
this point in the spec.

We believe that this attack (if it worked on the code) would be within the scope of the
Federal Chancellery requirements of individual verifiability, because, “Proof of correct
registration must be provided for each partial vote.” ([Chal8b], Article 4, Paragraph 2.)
In this case, the voter receives her expected return code for the question on which the
answer has been substituted. However, she can observe that there is a problem with her
other codes if she checks carefully.

3.1.1. The setting

Suppose that there are two questions each with two options, but one question is much
more important than the other. A cheating client will fabricate correct vote choice codes
for the important question, despite sending the incorrect vote. The voter (if she checks
carefully) will see that there are invalid vote choice codes for the unimportant question,
but will receive the correct codes for the one she cares about.

Suppose pyes and p,, are primes representing ‘yes’ and ‘no’ answers respectively to
the important question (Question 1). The ballot also contains a second question of less
importance (Question 2), with answers represented by p3 and py.!

The cheating client can substitute its preferred vote for Question 1 while retrieving
the voter’s expected return code. The vote for Question 2 remains valid but no valid
choice code is retrieved. The attacker transfers the code substitution to Question 2 and
hopes the voter doesn’t notice.

3.1.2. Substituting a choice but generating the correct return code

The main observation in this section is that the exponentiation proof in the vote genera-
tion proves that the product of the partial choice codes has been correctly exponentiated—
it does not prove that each individual element has been properly exponentiated.

The voter wants to vote ‘yes’ for Question 1, but the cheating client wants to vote
‘no’ and retrieve the voter’s expected choice codes. Suppose the voter wants choice ps3
for Question 2.

Vote construction is described in the spec [Scy19c], Section 5.2. The cheating client
generates a random r and computes the vote as

E, = (gra pkrEBlpnopi’r)

'In real Swiss referenda, there are also explicit “blank” codes, but they are omitted here for simplicity.
The attack works exactly the same if they are included.

19

Note that this correctly reflects the voter’s choice for Question 2, but the client’s sub-
stitute for Question 1.

It then generates the partial choice codes pCCy = ngik and pCCy = (props/Pyes) .
Note that the partial choice code for Question 1 reflects the voter’s choice, not the actual
vote. The partial choice code for Question 2 is not valid.

It generates the zero knowledge proofs entirely honestly, because all the facts they
are claiming are true. To see why, observe that it needs to prove that the product
of partial choice codes is properly exponentiated, not the individual codes. Let E5 be
the encryption of the product of the partial choice return codes, with the public key
corresponding to the product of the choice code public keys. That is,

By = (9", (phec, Phoe,)” pCCLpCC,y)

Let Eopp = (g70ck, pk’,;j%cfk(pnopg)”cs’“), the result of exponentiating each element of F;
by vesk.

The Schnorr proof proves that the client knows the encryption used to generate Fjy,
which it does.

The exponentiation proof proves that E.,, is generated by exponentiating each element
of E; to the private exponent corresponding to the public key ¢****, which it is.

The proof of plaintext equality proves that E.,, encrypts the same value, under
pkpp,, as FE,, under the product public key ITF_, pkoe,, which in our example is simply

pkoc, Pkcc,- This is true. The message represented by FEs is

vesk

pCC pCCy = PreF(Pnobs/pyes) ™" = (Pnobs)

which is exactly the plaintext of E.,.

In summary, based on a literal reading of the current version of the spec, it seems that
it will be noted that an error occurred, but the choice codes that were correctly retrieved
will be sent back to the voter. However, in the current implementation no codes would
be returned, and hence a threat that seems exploitable from a literal interpretation of
the spec actually does not work on the software.

3.1.3. How does the proof of individual verifiability deal with this case?

We read the cryptographic proof of individual verifiability [Scy17b| carefully to under-
stand whether the zero knowledge proof of exponentiation is properly modelled as prov-
ing only that the product of partial choice codes matches the exponentiated compressed
vote, or incorrectly modelled as proving that each exponent is separately properly expo-
nentiated. The answer is that it models neither, because the proof deals only with the
case of a voter submitting a single choice in a one-question election.

The protocol description in [Scy17b] does make it clear that short choice codes should
be returned only if all of them are successfully retrieved. However, this rule is never
used because the security proof game involves only one vote. It is possible that if this
rule had been used in the proof, then its importance would have been better understood
and it would have been more carefully described in the spec.

20

We did not thoroughly examine the symbolic proof [Scyl7a]. However, we note that
in Sec 2, p.4, it explicitly says that it does not attempt to model this issue:

Roughly speaking, msc, proves knowledge of nonce r, while ey, and mpieq
prove that the partial choice codes pCCY, ..., pCC, are linked to the cipher-
text Enc(EB,, ¢(vy,...,vx),7), that encrypts the voting options, and the
voters’ verification card secret key VC4. The most important limitation of
this modelling of the zero-knowledge proofs is that the compacting function
¢(+) enjoys commutative properties that cannot be captured in Proverif as
of yet.

Hence the reasons that this cheating attempt does not succeed have nothing to do
with the assurances given in either proof.

3.1.4. How to address the problem

It is clear that the spec should be updated to ensure that choice codes are returned
only if all of them have been successfully retrieved. However, this doesn’t really solve
the fundamental problem, which is that the exponentiation proof is used informally as a
proof that all elements are equal, but actually proves only that the products are equal.
There may be other attacks that exploit this, even if this particular one is disallowed.
There is an important theoretical question of whether it is sufficient to provide a zero
knowledge proof that the product of pCC's is the proper exponentiation of the product
of vote choices, when what we need to use is that the sets of components are equal. It
is obviously not true in general that ab = cd = {a,b} = {¢,d}. There should be
a lemma saying roughly that, in this situation, the fact that E;, E» and Eoyp satisty
the relations defined by the exponentiation and plaintext equality ZKPs implies that

{pyek, . ppet = {pCCy, ..., pCCL}.

Recommendation 6 (complex; proof). Prove that the facts proven in the ZKPs imply
that the partial choice codes correspond to the votes that will be retrieved at decryption
time. There are two ways that proving this could be approached:

e FExamine the mathematical group structure and argue that the equality of the prod-
ucts implies the equality of the elements in this case. We are not sure whether this
15 true in this setting—it needs careful thought.

o Alternatively, remove the optimization in which votes are multiplied together, and
instead use the multi-element versions of both the election and the Choice Codes
public keys. Now the exponentiation proof would apply directly to the tuple of
values, one for each choice, and similarly the proof of plaintext equality would be
applied in the multiple-element version.

Either way, the security proof should be updated, either to make it clear that a proof
of matching products is sufficient, or to use instead the proof of elementwise matches.

21

Operation
1) Define the function PHI,xponentiation as follows:

i. Number of inputs = 1

cytl.com

| I
Scytl

yt I Protocol

i. Number of outputs = k
iii. Base elements: [g, Cy,, Cn]-
iv. Computation rules [[(1,1)]; [(2,D)]; ...; [(k, D]]
2) Call the Maurer’s Unified Proofs Verifier primitive with the following inputs:
a. Public Values:
i. The base elements: [g,Cy, ..., Cin].

ii. The statement [g°¥, C§¥, ..., C3F].

Figure 4: Operation of the Exponentiation proof verifier, in the spec. k is not defined
but should be m + 2, which should be validated on input.

3.2. Correcting the specifications of the zero knowledge proofs

One of the main purposes of our mandate was to examine the zero knowledge proofs in
the specification and the code. These have recently been updated following our discovery
(with Sarah Jamie Lewis [LPT19a]) that weaknesses in their earlier version could lead
to cast-as-intended verification failures. The newest version of the specification [Scy19c¢]
has significant changes to address these problems. However, the current version is quite
rushed. There are some typos and imprecisions, described below, that make it difficult
to assess whether the corresponding verification code is secure.

The spec tends to assume that certain input elements have a certain form (such as a
certain length), though it does not always make these checks explicitly. In this section
we identify some of the omissions in the spec and explain why, if they were also omitted
from the code, this would allow an attack against cast-as-intended verifiability.

Again, this attack does not actually work on the current version of the code, because
the code contains input validation checks that are not explicit in the spec.

Here are some examples of corrections to be made to the spec:

22

3.2.1. Checking the lengths of input values: exponentiation proof

The Exponentiation proof verifier (7.2.4) contains a variable k£ which is used to generate
the computation rules but isn’t defined. An answer from SwissPost suggests this should
be initialised as £ = m + 2 and we agree. The code seems to initialize k£ to match the
length of the input base elements (which seems correct).

However, nowhere in the spec does it check that the length of the statement (the
exponentiated elements) is the same—it simply assumes, at the beginning of the Expo-
nentiation proof verifier, that its two input lists are the same length — see Figure 4.

So, a literal reading of the spec (without adding explicit input validation) might allow
an implementation that accepts a list of exponentiated elements that is longer than the
list of base elements—this would pass verification (according to the spec) if the first &
elements were correctly exponentiated, where k is length of the list of base elements.

Furthermore, the specification (see Sections 5.2.1.8-9 and 6.2.3 of [Scy19¢| in particu-
lar), which does require various length validation steps, does not require any such step
for the ZK proofs. So, it does not appear that such length differences would need to be
verified outside the proof verifier.

Still, the code does check that its input lists are the same length, using an input-
validation function called validateExponentiationProofVerifierInput.

3.2.2. Checking the lengths of input values: proof of plaintext equality

The proof of plaintext equality is still written in the spec (Sections 7.2.5 and 7.2.6) in
the multi-element version, in order to prove equality of two k + 1-element ciphertexts
for any k > 1. In Step 1 it takes the last k elements of the primary ciphertext and the
last k elements of the secondary ciphertext and proves they encrypt the same values,
relative to the base elements that are prepended. In particular, Section 7.2.5 reads:

2) Consider the last k elements of the Primary Ciphertext and the last &
elements of the Secondary Ciphertext. Call them the Primary SubCiphertext
[Cy, ..., C%| and Secondary SubCiphertext [Dy, ..., D] respectively.

This seems correct if the input ciphertexts are both of length k+ 1. However, although
it assumes that the primary and secondary ciphertexts have the same length, it never
explicitly checks that this is so.

So, with a literal reading of the spec (without adding explicit input validation) it
seems possible to append another ciphertext element (or several elements) to the end of
either of the ciphertexts, and have only the last k elements used in the proof and the
verification.

The code actually runs an input validation function, which does check that the lengths
are as expected: validatePlaintextEqualityProofVerifierInput. It always sets
k =1, corresponding to the traditional setting in which an ElGamal ciphertext is a pair.

23

3.2.3. Using extra-long ciphertexts to submit inconsistent vote and partial choice
codes

Those apparently benign issues could actually be quite problematic: we now show an
attack that would be successful if the code followed the spec more closely and did not
perform any length-checking on the ZK proof inputs.

The purpose of this section is to explain why explicit input validation should be
included in the spec.

The idea is based on three observations, introduced above:

1. When the Election Information Context validates the received vote [Scyl9c, Sec-
tion 5.2(8)], it checks the number of elements in the vote ciphertext (Step (h))
and the number of encrypted partial choice codes (Step (7)). It does not check the
length of the ciphertext exponentiations that are used to prove that the vote and
the choice codes are consistent. (‘Ciphertext exponentiations’ is the term used in
the spec; we use E.,, in this report.)

2. The exponentiation proof verifier (7.2.4 in [Scy19c]) assumes a number of outputs,
k, that is not defined anywhere and, in particular, is not constrained to be equal to
the length of either the base ciphertext or the exponentiated ciphertext. It assumes
that the base and exponentiated ciphertexts are of equal length, but never checks
that they are. It seems possible to add extra elements to the end of the properly-
exponentiated ones.

3. The plaintext equality proof verifier (7.2.6 in [Scy19c]), in Operation Step 2, takes
the last k elements of each ciphertext, without explicitly checking whether the two
input ciphertexts have length &+ 1—this is simply assumed to be true of the input.

There are also vote validations described in Section 6.2.3 of the spec, though these
seem to duplicate validations that are performed by the Election Information Context
upon receipt of the vote.

Submitting a different vote with the expected partial choice codes

The idea of the attack is simple: we will make F.,, contain three elements, not two,
and we will use the first two in the exponentiation proof and the first and last in the
proof of plaintext equality.

Assume a simple one-question election with a yes/no answer. Suppose again that the
voter wants to vote p,.s but the cheating client prefers p,,. The cheating client generates
a random r and computes the vote as

B, = (gr, pk%Blpno)~

It then generates the partial choice code pCC| = ngik Note that the partial choice
code reflects the voter’s choice, not the actual vote.

Recall that Ey = (g, pkgcl pCCY) is the encryption of the product of partial choice
codes, with the choice codes public key. (In this example we have only one code and hence

24

only one key, but it works just as well for multiple voting options.) The exponentiated
ciphertext E.q, is supposed to be (g™, pkys** presk), the result of exponentiating each
element of F; by vcsk.

The cheating client instead creates a three-element tuple

Eeap = (g7, k35 poc® pk ™ Dyes)
The client will use the first 2 elements in the exponentiation proof, with gv*** prepended
by the server side, to prove (truthfully) that they are a correct exponentiation of (g, £1),
assuming that the verifier does not notice the extra value that is appended. It will then
use the first and last elements as a ciphertext in the plaintext equality proof to prove
(truthfully) that it contains the same plaintext as Fs.

What would happen in the exponentiation proof
The inputs to the exponentiation proof verifier (based on [Scy19¢| 5.2(9)a) will now
be:

e Base elements: [g, 9", pkp, Pno)

e Exponentiated elements: [(gvcsk,gr-vcsk,pk%f kP%Sk,pkygfkngik)]

e Exponentiation proof

In the exponentiation proof verifier (7.2.4 in [Scy19c¢]), as described in Section 3.2.1, if no
input validation is performed then the proof is performed on the first k£ elements—this
is how the proof rules are defined. If we assume k is defined as the length of the base
elements (which it is in the code), then the exponentiated elements referred to in the
proof rule are only the first £, in this case the first three. Hence it amounts to proving
that (gvesk, grvesk, pkggfkpggsk) is a proper exponentiation of [g, g", pkyp, Pnol, Which is
true.

What would happen in the proof of plaintext equality The exponentiated elements
in the exponentiation proof are the same as the primary ciphertext in the proof of
plaintext inequality. The inputs to the plaintext equality proof verifier (based on [Scy19c¢]
5.2(9)b) will now be:

r.vesk r.wesk, vesk r.vcsk chk]

e Primary ciphertext: [g PEER, oo PEEE, Dycs

e Primary public key: pkyp,

Secondary ciphertext: Ey = 9", pk‘gcl pCC,]

Secondary public key: pkec,

Plaintext equality proof

25

In the plaintext equality proof verifier (7.2.6 in [Scy19c]), as described in Section 3.2.2,
it takes the last k elements from each input ciphertext, without checking that they are
the same. We will assume that £ = 1, which is the way the code initialises it.

Step 2 of its operation takes the last k elements (in our example, one element) from
each ciphertext. Call them the Primary SubCiphertext [C}] and the Secondary SubCi-
phertext [D;]. All subsequent operations involve only Cy, Dy (corresponding to g"ves*
and ¢", the first elements of each ciphertext) and the last & that have just been se-
lected. It seems that if either ciphertkext’s length is longer than k£ + 1, its other values

r.vesk vesk ;

(in particular, its second value pkpE* ppe™* in this example) are not used.
The statement input to Maurer’s Unified Proofs Verifier in step 5 (a)ii of 7.2.6 is

[Co, Dy, Cl(D1>_1] = [QT'UCSk79r/7pkggfkngik/ (pkrcclpCCI)]
lg7%, 9", Pk, [ke,] (because pyest = pCOYy)
which will be a correctly-verifying input given the plaintext equality proof rules.
In summary, if a cheating client can submit extra-long ciphertext exponentiations,
then it can retrieve the choice codes for “yes”, but submit a vote for “no.”

3.2.4. Recommendations

The input validation in the code seems to be much more thorough than that of the spec.
The part of the spec dealing with the input and validation of the vote should be written
more carefully to make that input validation explicit.

Part of the problem is that there are often not explicit names given to the values in
the vote data structure. The spec tends to describe the elements in the form they are
supposed to be input, rather than with names that derive from the form in which they
were received. This makes it hard to write careful checks on what they contain. For
example, in the Send a Vote section (5.2), the ciphertext we have referred to as E.,, is
referred to as “ciphertext exponentiations” in (6j). We know that this is the same value
referred to as the ‘Exponentiated elements’ when it is input into the Exponentiation
proof (4b) and as the ‘primary ciphertext’ in the proof of plaintext equality (4c), but
consistent names are not used.

Similarly, the spec tends to describe the elements provided as input to the various
verification steps in the form they are supposed to be input, rather than with names
that derive from the form in which they were received. For example, the exponentiated
elements input to the Exponentiation proof verifier in 5.2(9) are denoted as [g*¢**, g"vesk,
(pkp, T pi)"**F)], but of course they have this complex form only if they are truthfully
constructed. It would be much less error-prone to give the values in the submitted vote
names, and then use those names when calling the proof verifiers. Then the input
validation step that precedes proof verification in the code could be made explicit in the
spec.

Recommendation 7 (medium difficulty; spec). Make the input validations that are
performed in the code before proof verification explicit in the spec. This will mean giving
names to the values received from voters, and using those names as inputs to the proof

26

verifiers (and their input validations) rather than using expressions that assume the form
that they are checking for.

Again, we find that a literal interpretation of the spec can result in a violation of
cast-as-intended verifiability within the security model. In this case, the spec is simply
not clear—it assumes that the input has a certain form (with arrays of a particular
length) but does not check. If they were simply assumed but not checked in the code,
then this would allow a cheating client to retrieve the right choice codes after submitting
the wrong vote.

3.3. Summary of attacks on the spec, but not the code, within the
trust model

We have found two different examples in which the spec could be interpreted to allow
an attack on individual verifiability by a misbehaving client. In both cases, the current
implementation in the code prevents the attack, so the actual system is not vulnerable.
However, in both cases a literal interpretation of the spec allows an implementation that
would be vulnerable. This might be particularly dangerous if there is a plan, at some
point, to build a second implementation of the voting system based on the spec.

Given that our primary mandate was to examine the spec (one of us did not even have
the code), the fact that divergences between the code and the spec make all the difference
between exploitable and un-exploitable vulnerabilities in cast-as-intended verification
should not be interpreted as comforting, even though in every example we found, the
code is actually better than the spec. Although in this case the small details mean that
attacks on the spec do not succeed on the code, it is just as likely that other unnoticed
small differences have the opposite effect. Since we looked at the code only when the
spec seemed to contain a problem, we would not have noticed things that seem to be
correct in the spec but were not implemented correctly.

The current version of the spec is very new and contains some typos and imprecisions.
There are significant changes based on our previous discoveries, and these changes need
to be described more carefully in the spec before we can be confident they are correct.

4. Examining sVote’s trusted server side—outside the
trust model

In this section we examine attacks that fall outside the trust model because they involve
misbehaviour by server-side entities. They are based on reading the spec—as far as we
know, they would succeed on the code, though we have not tested them in practice.

In sVote v1, there is a tremendous degree of complexity on the server side, which
does not seem appropriately matched to the assumption that the “server side is trusted”
(proof, p.2). We guess that the server-side complexity is intended to mitigate at least
some server-side misbehaviour, by trying to make sure that it is difficult for a single
server-side component to breach privacy or, in collusion with corrupted clients, to commit

27

undetectable electoral fraud. However, it is difficult to understand what those intended
security properties were.

It is important to emphasize that server-side logging, even available to diligent and
honest administrators and auditors, does not necessarily expose all server-side attacks.
Server-side logging might offer evidence for some of the attacks that we are describing
here, but not all. Even for the detectable attacks, it would require well-developed log
inspection systems, which are not described here.

The formal proofs, and the legal requirements, both allow the server side to be entirely
trusted. Although this means that server entities are not required to produce any proof
of correct behaviour, much of the documentation hints that the system defends against
some server-side misbehaviour. For example, p.18 of the (very recent) “Security analysis
of key cryptographic elements for individual verifiability (v 1.1)” [Scy19d] contains the
following remark after a discussion of the importance of secure key generation:

This would imply that the attacker controls the voting server, which goes
beyond the trust assumptions for voting systems up to 50% of the electorate.
However, it is a best practice that these attacks are not possible even if an
attack would go beyond the adversary’s capabilities.

It is not clear whether only this particular attack, or all attacks by an adversary who
controls the voting server, or all attacks by an adversary who controls any of the servers,
are asserted to be impossible.

There are many ways that the assumption “the server side is trusted” could have been
put in to practice. There are crucial differences between different models. For example
in the Norwegian Internet voting system [Gj@11], the two main server-side components
are trusted not to collude to cheat. In Pretty Good Democracy [RT09], the assumption
is that no more than a certain threshold of the server-side entities that share the key
collude. Other systems, such as Helios [ADMP709], trust that not all the server-side
entities that share the decryption key collude to break privacy, and guarantee integrity
even if all the server side components are corrupted.

In sVote v1, this assumption has been realised in the weakest possible way: there are
situations in which a single component, acting alone or in collusion with a cheating client,
can undetectably affect the election outcome. Although this is not strictly inconsistent
with the precise security model, it is certainly different from the impression given in
some parts of the documentation. For example, at the bottom of p.18 the “Proof of
Individual Verifiability,” [Scy17b] says,

We consider that the election authorities and the registrars behave prop-
erly ... In order to enforce this property, both election authorities and regis-
trars can be distributed among a set of trustees which compute the required
information using multiparty computation algorithms.

This gives the impression that it is easy to extend the protocol to one in which the
trusted-server-side assumption is to trust a threshold, rather than trusting that no sin-
gle entity on the server side cheats. However, multiparty computation algorithms can

28

be extremely computationally intensive, particularly when they do not follow simple
arithmetic or logical circuits. (See [ABFT18] for a good description of what multiparty
computation solutions work best in which circumstances.) We do not agree that this
would be feasible for all relevant steps. Paper printing, for example, cannot practically
be distributed (though there have been some clever efforts to try [ECHA09]). The fact
that some parts of the server-side functionality come with proofs of their correctness
(such as decryption proofs and a mixnet) merely adds to the confusion: these entities
are entirely trusted—proving some parts of some entities’ computations gives a false
impression of overall protocol verifiability.

We give some important examples of processes that allow cheating by a single misbe-
having server-side entity, possibly in collusion with a cheating client.

4.1. The lack of verifiable mixing

The most significant gap in the specification is the absence of any specification of a
verifiable mixing process, or a way of verifying its proofs. Section 6.3 of the most
recent spec [Scy19c¢| instructs the mix server to “Generate the cryptographic proofs to
demonstrate that the shuffled and re-encrypted votes in the Mixnet Ballot Box are the
same that those in the Cleansed Ballot Box.” Then at the end of the Mixing process it
is expected to “Output a list of Signed Mixed ballot boxes and a list of sets of Proofs of
the mixing process,” (6.3, p.59), but there is no shuffle proof generation or verification
mentioned in the document. We were advised by SwissPost that the shuffle proof is
generated but not verified.

The presence in the document of a verification step that is actually not specified and
not used gives an incorrect impression of the trust model. In fact, the mixing process
can easily substitute votes. If it is implemented as a series of mix servers, any one of
them can substitute votes. If it is implemented as a single trusted server, then this server
alone can link a voter’s identity to her decrypted vote.

Given the possibility of vote substitution in the mixing step, there is no logical gain
from proving decryption (as described in the spec Section 6.4.1). There is also no gain
in having the decryption key distributed between multiple entities in order to protect
privacy: a cheating mixer could make a valid shuffle of the encrypted votes as they are
submitted (hence, while they are not anonymous), wait until decryption is performed,
and use the knowledge of the permutation applied in the mixing to determine who voted
for whom.

Again, it seems only to give a naive reader the impression that certain kinds of server-
side attacks are defended against, when they are not. We think it would be better to
omit these proofs too.

Recommendation 8 (Complex or simple; spec). Either include shuffle verification in
the spec and make the shuffle proofs available for independent verification, or remove
references to verifiable shuffie proofs from the spec. There does not seem to be any gain
from generating proofs that are not verified. Consider removing decryption proofs also,
for the same reason.

29

Even if a verifiable mixnet is incorporated in a later version of this software, there
remain opportunities for a single malicious server-side entity to read and manipulate
votes. We describe a few examples below. The attacks on integrity require collusion
with a cheating client; the privacy attacks do not.

4.2. HMAC-based code recovery

The sVote system uses a vote-confirmation process to guard against the inclusion of votes
that have not returned the correct choice codes to the voters. When a voter receives
the correct choice codes, she is supposed to enter a Ballot Casting Key (BCK), which is
then processed at the server-side to confirm the vote and issue her with her (short) Vote
Cast Code. In this section we examine whether it is possible for an attacker to forge a
confirmation that the voter did not want, or to undetectably block a confirmation that
the voter did want. Since only confirmed votes are counted, this may have the effect of
either counting a vote the voter rejected, or not counting a vote she wanted to confirm.

We did not find any way that a client alone can cheat in the confirmation process.
However, the Vote Verification Context, which holds the Codes secret key (Cgg in the
proof, and C'SK in the spec) can cheat, as described below. This is not inconsisent with
the complete trust in the server side. However, it is important because the code-recovery
process uses both a cryptographic hash and a symmetric encryption function - although
it would be possible in theory to distribute these functions using MPC and a secret-
shared key, in practice it would be prohibitively computationally expensive. Neither
mixing nor the decryption proofs would make any difference, because they work only on
votes that have been confirmed. Hence this function is performed by a single entity, in
a fashion that is not available to scrutiny by anyone who does not know Clsy.

We show two attacks in which a single corrupt server-side component colludes with a
cheating client. In the first, the Vote Verification Context in collusion with a cheating
client can silently fail to confirm votes despite returning the correct Vote Cast Code
(sVCC) to the voter. In the second, they can brute-force the confirmation message
(without learning the true BCK from the voter) and fabricate a confirmation that the
voter did not want.

4.2.1. Dropping a confirmation while returning the correct Vote Cast Code

The Vote Verification Context is supposed to input a confirmation message CM™ and
use it to generate a long Vote Cast Code (IVCC) as?

IVCC™ = HMAC (pCC|VCID|EEID|{ attributes}, CSK).

It then looks in the Codes Mapping Table to find H(IVCC™). If it finds it, it uses it
to decrypt the corresponding signed short vote code (sVCC') which is returned to the
voter.

2The proof and the spec differ slightly here—the spec incorporates VCID and EEID. This does not
affect the attack described in this section.

30

The attack is simply to send sVCC' back to the client via some other channel, without
changing the status of the vote to CAST (as instructed in step 10, p.51 of the spec).
Thus the voter receives the sVCC, but the vote is not counted. The colluding client
makes it appear as if the sVCC came through the official channel.

This attack is detectable by a diligent voter who checks whether her client has received
the signed vote and receipt that is supposed to be sent in Step 11 (it will not be) or who
logs back in with a non-colluding client (as described in Section 5.3.1) to check whether
the Election Information Context has confirmed her vote (it will not have). However, a
“normal” voter who trusts her codes alone will be deceived.

4.2.2. Brute-forcing a confirmation that the voter did not want

In this section we show that, if there is collusion between the client and the cheating
Vote Verification Context, they can undetectably either include votes that do not reflect
the voter’s intention, or exclude votes that the voter wanted to confirm.

Consider what information is required to decrypt the Codes Mapping Table and re-
trieve the sVCC'. It seems to be intended that three pieces of information are required
(apart from the Voting Card ID V' Cjy): the Codes Secret Key (Cg, or CodesSK in the
spec), which is held by the Vote Verification Context, the Verification Card Private Key
(VO or VCSK in the spec), which is held by the client, and the voter’s Ballot Cast-
ing Key BCK, known only to the voter. However, BCK is only 8 decimal digits, and
the Codes Mapping Table has sufficient information to test the correctness of a guess.
Therefore an entity that knows Cy, V3 and VC’sig can brute-force it easily as follows:

Algorithm 1 Brute-forcing short vote cast code (sVCC): client-Vote Verification Con-
text Collusion.
for b =0 to 10* — 1 do _
Compute the confirmation message CM™ = b2VCi mod .
Set [VCC = HMAC (pCC|VCID|EEID|{ attributes}, CodesSK).
Search for H(IVCC') in the Codes Mapping Table for V Cj,.
if H(IVCC) is present then
set BCK =b
set EKey = KDF(IVCC, keylength)
Retrieve the encrypted sVCC associated with H(IVCC);
Decrypt it with EKey.
Return the short, signed sVCC.
end if
end for

This requires computing a few hundred million hashes, which can be done in seconds.
The attack could be performed by a cheating Vote Verification Context to whom the
Verification Card Private Key V(% had (deliberately or accidentally) leaked. Note that
new side-channel key leakage attacks appear all the time (see [KGGY20] for example).

31

If the Vote Verification Context actively colludes with a cheating client, a vote could be
counted even though it does not match the voter’s intention. The cheating client could
send a vote other than what the voter wanted, and also leak VC% (and VC;4) to the
cheating Vote Verification Context. The voter will receive short Choice Codes she does
not expect, and she will not confirm the vote, refusing to submit her BCK. The cheating
client submits some fake value for BCK instead. However, the Vote Verification Context
can brute-force sVCC' as above, and follow the protocol exactly as if the BCK value
it received was the correct one. From the server side, even with complete information
and perfect logs, this looks almost exactly like a vote that was sent and confirmed—the
discrepancy is apparent only to an auditor who can double-check the HMAC computation
knowing CodesSK. Thus the vote is counted although the short Choice Codes were
wrong and the voter did not confirm the vote.

Attacks such as the ones described above could also be facilitated by the fact that
the exponentiation function is actually homomorphic (and not a PRF, as we discussed
in Section 2.2.1). The impact of the following strategy looks largely theoretical, but
it shows that the non-PRF character of the exponentiation function may lead to some
unexpected effects.

id
Suppose, that a malicious Vote Verification Context sees the sequence of pC'C; = pz/CS’“

of a voter. He may now, even ignoring the value of VC% . explore all sorts of products of
pCC;, derive the corresponding [V CC' values and test if H(IVCC') appears in the Codes
Mapping Table. This may succeed with non-negligible probability and make it possible
to decrypt sV CC' even if the voter never started the vote confirmation phase.

Of course, this strategy would only work if the BC'K happens to be a product of
the primes corresponding to the candidates selected by the voter. We observed, for
instance, that 10504 of the 8-digit integer values that BCK can take are a product
of primes between 3 and 29, which is a proportion around 107%. The actual success
probability will be smaller, since only specific combinations of primes can make valid
votes, and not all of them will be QR’s. It would still be much larger than what it would
be if a real PRF were used.

4.2.3. Discussion and possible mitigations

This attack is detectable by a diligent voter who checks whether her client has received
the signed vote and receipt that is supposed to be sent in Step 11 (it will not be) or who
logs back in with a non-colluding client (as described in Section 5.3.1) to check whether
the Election Information Context has confirmed her vote (it will not have). However, a
voter who trusts her codes alone will be deceived.

We emphasise that this attack is not inconsistent with the proof of individual verifia-
bility, nor with the requirement for individual verifiability in the context of an entirely-
trusted server side. It is, however, inconsistent with the informal hints that server-side
misbehaviour can be detected and prevented. It is also inconsistent with the informally-
expressed idea that server-side manipulation can be detected by diligent logging or
careful administration. Neither of these attacks would be evident in the logs—one is
completely indistinguishable at the server side from a true refusal to confirm; the other

32

is distinguishable only given secret information (CodesSK).

These issues are not easy to fix—indeed, the whole purpose of the complete verifiability
version (both of the Federal Chancellery requirements and of sVote) is to remove these
sorts of problems. Hence we recommend simply communicating the security properties
more accurately.

Recommendation 9 (simple; spec and other documents). Be more explicit about the
trust in every server-side component to be honest. And be clear that undetectable attacks
by single server-side components are possible.

4.3. The use of trapdoored parameter generation

Section 4.1.2 of the spec ([Scy19b] and [Scy19c]) describes some conditions that the
election prime parameters (p, ¢, g and the primes representing the voting options) must
satisfy, but does not describe how they are generated or where the “list of prime numbers”
comes from.

Returning to the “Security analysis of key cryptographic elements for individual ver-
ifiability,” we will illustrate the importance of verifiable parameter generation. It says:

Individual verifiability of sVote relies on the inability of an external attacker
to express g as a combination of voting options. g has to be selected in such
a way that finding the correlation between any two voting options and g is
hard. Otherwise, an attacker who found a correlation for example between
vy , v9 and g will we able to break might individual verifiability by computing
Choice Return Code for v; based on Choice Return Code for vy and public
values (This would imply that the attacker controls the voting server, which
goes beyond the trust assumptions for voting systems up to 50% of the
electorate. However, it is a best practice that these attacks are not possible
even if an attack would go beyond the adversary’s capabilities). To avoid
the problem of checking all possible combinations in case when p and ¢ are
generated in a verifiable way, the generator g of the cyclic group QR ¢ is
selected as the first small prime of the list of all small primes that qualifies.

We were unable to find any precise specification of how the group parameters (p, q, g)
and the primes vy, vo used to indicate voting choices are chosen, though the security
analysis later mentions that “The values of p , ¢ and g are configured at deploy-time. It
is possible to generate a fresh pair p and ¢ in a verifiable way according to FIPS 186-4
recommendations.” (Section 4.2) This is not specified in the spec, however. Section
4.1.2 of the spec, and section 2.5 of the older proof [Scy17b] describe the conditions that
the parameters must satisfy, not how they are generated. The spec simply adds “This
activity may be performed in a pre-configuration step.” In this section we explain why
verifiable generation is important, and why verification of the generation process should
be performed, especially if this generation does not happen within trusted components.

Note also there’s a very important difference between private key material and param-
eter generation. These parameters are public and there is no problem if they are leaked.

33

This may suggest that this generation of public parameter generation, which may be a
relatively expensive task from a computational point of view, could happen externally,
in a less trusted and more convenient environment. The problem is that if these public
parameters are maliciously generated with a trapdoor, this could allow attacks on both
privacy and integrity.

It is not necessary for the attacker to be able to “express g as a combination of voting
options.” Suppose that the parameter generation is compromised so that someone knows
w,v,a,bst. w* = v’ mod p, where v and w are small primes used to represent voting
options. This is probably hard to compute for a given p, but it is not hard to generate
values of p for which such relationships are known—an example is included at the end
of this report. We will use this as an example throughout this section, but knowledge
of other nontrivial relationships among the parameters (such as knowing log, v;) would
permit similar attacks.?

We will examine what attacks are possible for clients and servers that have this knowl-
edge. This section makes use of ideas from Matt Green, Nadia Heninger and Hovav
Shacham (who also generated trapdoored parameters), which they expressed in the con-
text of sVote 2.0, the complete verifiability version of the system.

4.3.1. Vote privacy - server-side only

Assume that there are two or more questions in the election, and that v, w are prime
numbers used to represent answers to the first and second questions respectively.

Suppose that the Vote Verification Context V'V C knows w, v, a, b s.t. w* = v* mod p.
The VVC can decrypt the partial choice codes pCC, pCCY sent by the client. (In
the “proof of individual verifiability,” they are sent in the clear so this attack could be
performed by anyone; in the spec they are encrypted with the Choice Codes Public Key
pkoe for which the corresponding private key is held by the VVC (Spec 5.2 (3) and
(11a), p.45-6)). The attacker (who observes but need not alter the VCC) would like to
learn the contents of the vote.

Recall that pCC,; = vly Cot (we omit the id index because we consider one voter at
a time). If it happens that this voter answered v to the first question and w to the
second question, then pCC, = vV and pCC, = w"*, so pCC® = pCCY. This is
overwhelmingly unlikely to occur for different vote choices. Hence this simple test can
be used to detect if the voter made exactly that pair of choices. Note that this does not
require collusion from the client because it does not need knowledge of V(.. Nor is it
significantly ameliorated by separating the pCC-decryption authority from the VCC—
whichever entity derives the Partial Choice Codes can perform this attack, if it knows
the trapdoor.

A very similar attack works when there is only one question on the ballot, but requires
knowledge of Cy,. The Vote Verification Context, given one value of pCC, can exponen-
tiate it by a/b. If H(fcodessi (pCCa/ b)) is in the codes table, it is overwhelmingly likely
that pCC represents a vote for w. (Again the protocol update to incorporate the voter

3This is because the attacker knows g" ¢+*, which is public information, so it can calculate ’UZV Coke,

34

and election ID into f makes no difference to this attack.)

4.3.2. False return-code generation - client-server collusion

The knowledge of a nontrivial relationship in the voting parameters allows for an attack
very similar to that described in Section 4.2.2, but resulting in a forged Vote Choice
Code. This attack requires collusion between the Vote Verification Context (VVC) and
the cheating client. Again, it does not break the security model, but it is another
example in which a single server-side component, in collusion with a cheating client, can
subvert verification in a way that leaves no trace in logs and requires no out-of-band
communication. It would not be detected by a voter who logged back in (as permitted
in 5.2.1) to see her vote choice codes via a non-colluding client, because it stores the
choice code that matches her intended vote, not the choice code for the vote that was
actually cast.

Again suppose that the Vote Verification Context V'V C' knows w,v,a,b s.t. w* =
v’ mod p, but now assume that v and w are different answers to the same question, for
example one means ‘yes’ and the other ‘no.” For simplicty, assume there is only one
question on the ballot and that the voter chooses v. The cheating client instead sends
a perfectly consistent vote and partial choice codes for w. We will show how the VVC
can generate and return the correct short choice codes for v, despite this being stored
and counted as a vote for w.

The VVC decrypts the partial choice code pCC, = w"%* sent by the client. It sets

pocll _ (pccl)a/b _ wVC’ska/b _ chsk

which is the correct partial choice code for v. It then performs the rest of the protocol
exactly as specified, but with pCC] instead of pC'Cy. This allows it to retrieve the long
Choice Code corresponding to v from the table, and then decrypt the short choice code
to be returned to the voter. This matches the vote that the voter requested, though not
what has been stored on her behalf. We assume that the voter would respond with her
BCK and that the vote would be confirmed. (Of course, if she didn’t then the attack
from Section 4.2.2 could be deployed.)

This attack would not be visible in the logs at all—it creates exactly the trail of a
properly submitted and confirmed vote. Like the attack in Section 4.2.2, it is distin-
guishable only by an observer who knows the codes secret key (CodesSK in the spec, or
Cg, in the proof).

It does require some way for the VVC to know what the voter asked for, in contrast
to the value sent by the client, but this could be agreed in advance (assuming the VVC
knows in advance which clients are corrupt) or communicated using some of the bits of
randomness in the encryptions.

The main point here is to ensure that no trapdoors of this form are known.

Recommendation 10 (medium; spec and code). Generate the election parameters p, q
and the primes used for vote choices in a transparent way.

35

On a similar theme, we note that the protocol specification requires p to be chosen
as a 2048 bit prime. While this is not expected to be a security issue today, it is below
most current standard recommendations, which indicate to use primes of at least 3000
bits when new primes are selected.

For instance:

e The ECRYPT-CSA report of 2018 [ECR18] recommends 3072 bits for “near term

protection”.

e The BSI recommends, in a report of 2019 [BSI19], the use of 2000 bit for security
until 2022, and 3000 bits for applications that will be in use beyond 2022. This
second time horizon looks reasonable for the protection of votes.

Similar numbers can be found from recent reports of the NIST or the American NSA.*
It would be in line with these reports to take the opportunity of the changes in the
generation process of p and ¢ to adapt the length of these primes.

Recommendation 11 (simple; spec and code). Generate the election parameters so
that p is at least 3072 bits long.

5. Receipt Freeness

The spec [Scy19c, 5.3 Confirms a Vote], Step 11 on p. 51 says “The Election Information
Context retrieves the vote and the receipt from the ballot box and the Voting Workflow
Context sends this information together with the Vote Cast Code and its signature to
the Client Context.” The receipt includes a hash of the verification card public key and
the voting card ID, making it hard to pretend that you have received someone else’s.
This introduces a privacy issue because it allows the client to prove that a particular vote
was cast. Although it is reasonable that the client must be trusted for privacy, it is not
inevitable that a cheating client can prove that a certain vote was cast: simply leaking
the information would be open to some degree of doubt, so that a voter who wanted
to deceive a coercer who hadn’t been watching her vote, could simply fake screenshots
or choice codes that pretended to do what the coercer wanted without actually casting
that vote. The return of the signed vote makes this impossible.

To prove how a particular person voted (or more precisely, how a particular VCID
and V Cpy voted), the client needs to remember the randomness r used to generate the
encrypted vote initially. It can then exhibit this value, the claimed vote, and the other
information described in 5.3 Step 12 (such as the signed receipt, signed encrypted vote,
authentication token signature) and send it to the coercer. The coercer can verify the
relevant server-side signatures and recompute the encryption to check that the vote was
cast as claimed. These signed values could only be available if exactly that vote was
confirmed.

4See https://www.keylength.com.

36

This aspect is not described in the public protocol description [Scy17b], in which only
the vote cast code, not the vote, is returned to the voter.

Receipt-freeness [BT94]—meaning the impossibility of proving how you voted—is an
important privacy-related property of elections. It is very hard to achieve for universally-
verifiable e-voting systems. Nevertheless it seems easily achievable in a system that
requires only individual verifiability in the context of a trusted server side.

It is debatable whether “the risk of vote selling is not significantly greater than with
postal voting.” (Annex [Chal8a] 4.2.2). This signed receipt certainly allows a person
selling their vote to provide incontrovertible evidence of what vote was cast, even after
the election, to a coercer who did not watch them vote. This does not seem possible
with postal voting, though of course postal voting credentials can simply be handed over
before election day.

Recommendation 12 (medium difficulty ; spec and code). Reconsider whether sending
a signed vote back to the voter is a good point on the tradeoff between evidence and
privacy.

6. Discussion and Summary

e We did not find any new client-only attacks on individual verifiability that could
be exploited on the latest version of the code.

e We found a series of gaps and errors in the proof of individual verifiability, which
render it unconvincing. It also differs significantly from the current version of the
protocol.

e We found client-only attacks on individual verifiability that succeed on a literal
interpetation of the spec, though they do not succeed on the current version of the
code. These imply edits are needed to the spec to make the defences explicit.

e We found instances in which a single misbehaving server-side entity can read or
undetectably alter votes. Although not inconsistent with the formal requirements,
this is inconsistent with informal hints that are given throughout the documenta-
tion that suggest a weaker trust model on the server side.

e We showed that voters can produce a completely convincing proof of how they
voted, even to a third party who did not watch them vote.

In summary, compared to the super-simple trusted voting system described in the In-
troduction, it appears that sVote v1 achieves approximately the same security goals with
vastly greater complexity. We did not find new attacks on cast-as-intended verifiability,
but we also did not find convincing evidence that no such attacks exist. The informal
claims to have better defence against a malicious server than ¢Vote are not true.

We compared the crytographic protocols, without examining voter authentication or
the administrative and procedural protections that are in place around sVote. However,

37

complexity affects these measures too: it is much easier to protect a simple system with
known shortcomings, than a more complex system whose administrators may not be
aware of all its limitations and vulnerabilities.

sVote v1 has at least the same shortcomings as ¢Vote, but they are not obvious. Its
complex design means that it is more, not less, likely than a simple system to have
more undetected individual verifiability failures. Also there are (still) some functionally
important differences between the source code and the specification—the system could be
much more genuinely said to have had proper scrutiny if the source code and specification
documents were made available online. We have only scratched the surface—it is likely
that there are more issues in the parts of the specification and code we have not had
time to examine.

References

oshinori Araki, Assi Barak, Jun Furukawa, Marcel Keller, Kazuma Ohara,

ABF*18] Toshinori Araki, Assi Barak, Jun Furuk Marcel Keller, K Oh
and Hikaru Tsuchida. How to choose suitable secure multiparty compu-
tation using generalized spdz. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, pages 2198-2200.
ACM, 2018.

[ADMP*09] Ben Adida, Olivier De Marneffe, Olivier Pereira, Jean-Jacques Quisquater,
et al. Electing a university president using open-audit voting: Analysis of
real-world use of helios. EVT/WOTE, 9(10), 20009.

[BG12] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for
correctness of a shuffle. In Advances in Cryptology - EUROCRYPT 2012,
pages 263-280. Springer, 2012.

[BST19] BSI. Kryptographische verfahren:empfehlungen und schlussellan-
gen. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf,
January 2019. BSI TR-02102-1.

[BT94] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections. In
STOC, volume 94, pages 544-553, 1994.

[Bv17] David Basin and Srdjan Capkun. Review of electronic vot-
ing protocol models and proofs (combined final report), May
2017. https://www.post.ch/-/media/post/evoting/dokumente/
zertifikat-pruefung-des-kryptographischen-protokolls.pdf?la=
en&vs=1.

[Chal8a) Swiss Federal Chancellery. Annex to the FCh (OEV, SR 161.116) ordinance
of 13 december 2013 on electronic voting - version 2.0, July 2018.

38

[Chal8b)]

[ECHA09)]

[ECR13]

[ECR18]

(Gjel1]

[Hoa81]

[KGGY20]

[KL15]

[LPT19a]

[LPT19b)]

[LPT19¢|

INIS07]

Swiss Federal Chancellery. Federal chancellery ordinance 161.116 on elec-
tronic voting (veles) of 13 december 2013, July 2018.

Aleks Essex, Jeremy Clark, Urs Hengartner, and Carlisle Adams. How to
print a secret. In Proceedings of the 4th USENIX conference on Hot topics
in security, Hot-Sec, volume 9, pages 3-3, 2009.

ECRYPT. Final report on main computational assumptionsin cryptogra-
phy. https://www.ecrypt.eu.org/ecrypt2/documents/D.MAYA.6.pdf,
January 2013.

ECRYPT - CSA. Algorithms, key size and protocols report (2018). http:
//www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.
pdf, February 2018.

Kristian Gjgsteen. The norwegian internet voting protocol. In International
Conference on E-Voting and Identity, pages 1-18. Springer, 2011.

Charles Antony Richard Hoare. The emperor’s old clothes. Communica-
tions of the ACM, 24(2):75-83, 1981.

Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. Ram-
bleed: Reading bits in memory without accessing them. In 4Ist IEEE
Symposium on Security and Privacy (SEP), 2020.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography.
CRC Press, 2nd edition, 2015.

Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague. Addendum to how
not to prove your election outcome. 2019. https://people.eng.unimelb.
edu.au/vjteague/HowNotToProveElectionOutcomeAddendum. pdf.

Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague. Ceci n’est pas
une preuve: The use of trapdoor commitments in bayer-groth proofs
and the implications for the verifiabilty of the scytl-swisspost internet
voting system, 2019. https://people.eng.unimelb.edu.au/vjteague/
UniversalVerifiabilitySwissPost.pdf.

Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague. How not to prove
your election outcome: The use of non-adaptive zero knowledge proofs
in the scytl-swisspost internet voting system, and its implications for de-
cryption proof soundness, 2019. https://people.eng.unimelb.edu.au/
vjteague/HowNotToProveElectionOutcome. pdf.

NIST. SP 800-38D Recommendation for Block Cipher Modes of Oper-
ation: Galois/Counter Mode (GCM) and GMAC. https://csrc.nist.
gov/publications/detail/sp/800-38d/final, November 2007.

39

[INPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random
functions and kdcs. In Advances in Cryptology - EUROCRYPT °99, volume
1592 of Lecture Notes in Computer Science, pages 327-346. Springer, 1999.

[RT09] Peter YA Ryan and Vanessa Teague. Pretty good democracy. In Interna-
tional Workshop on Security Protocols, pages 111-130. Springer, 2009.

[Scy17a] Scytl. Analysis of cast-as-intended verifiability and ballot privacy
properties for scytl’s swiss on-line voting protocol using proverif (ver-
sion 2). https://www.post.ch/-/media/post/evoting/dokumente/
analysis-verifiability-and-privacy-properties-for-swiss—-post-voting.
pdf?la=en&vs=1, 2017.

[Scy17b] Scytl. Swiss online voting system cryptographic
proof of individual verifiability, April 2017. https:
//www.post.ch/-/media/post/evoting/dokumente/
swiss-post-cryptographic-proof-of-individual-verifiability.
pdf?la=de&vs=2.

[Scy19a] Scytl. Scytl online voting protocol specifications — document differences
between versions 5.2 and 5.0, 2019.

[Scy19b] Scytl. Scytl online voting protocol specifications — document v. 5.2, 2019.
[Scy19¢] Scytl. Scytl online voting protocol specifications — document v. 5.3, 2019.

[Scy19d] Scytl. Security analysis of key cryptographic ele-
ments for individual verifiability, v 1.1, May 2019.
https://www.post.ch/-/media/post/evoting/dokumente/
swiss-post-cryptographic-proof-of-individual-verifiability.
pdf?la=de&vs=2.

[Sec19] Kudelski Security. Swiss post security review of key cryptographic elements
of the e-voting solution (version with individual verifiability at 50% of the
electorate), May 2019.

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security
proofs. Cryptology ePrint Archive, Report 2004/332, 2004. https://
eprint.iacr.org/2004/332.

40

A. Trapdoored election parameters

The following parameters were generated in a few hours on a standard laptop (along with
many other similar parameter choices). They are such that v, w, p and ¢ = (p — 1)/2
are prime, 2, v, and w are quadratic residues modulo p, v* = w® mod p, and |p| = 2046.

v=11,w = 53,a = 592, b = 357,

p = 7066125300686093818828868600858730687792498980976301760523458752031161733
71050464495535765997184120870231577435279141730278806125491529258939652445585
45474129308217060017773882336283820366471809571051189156176768816344699208105
09153853336399941297573361819046470909480380316396831979920008618154451680828
02301728880323174760184776790865758999647463403686417843437287149911574497989
90790914967361122128203357908982556730725948241307410998309683403 135701834466
16617950821932000477100720160399088021338579858607859377586680131 105588455520
99425659027679535910743949319726649140277133155445801162564289021630221463379
5527.

41

